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ABSTRACT

Although Mississippi Valley-type deposits in Lower Ordovician carbonate rocks of the
Appalachian orogen are commonly interpreted to have been precipitated by basinal brines, the
timing of brine migration remains poorly known. Late Paleozoic K-Ar isotopic ages on authi-
genic K-feldspar, which is widespread in Appalachian carbonate rocks, as well as evidence of
paleomagnetic overprints of similar age, have focused attention on the possibility that these
Mississippi Valley~type deposits formed as a resuit of late Paleozoic deformation. Geologic and
geochemical similarities among most of these deposits, from Georgia to Newfoundland, includ-
ing unusually high sphalerite/galena ratios, isotopically heavy sulfur, and relatively nonradio-
genic lead, suggest that they are coeval. Sphalerite “sand” that parallels host-rock layering in
many of the deposits indicates that mineralization occurred before regional deformation. Al-
though the late Paleozoic age of deformation in the southern Appalachians provides little
constraint on the age of Mississippi Valley-type mineralization, deformation of these deposits
in the Newfoundland Appalachians is early to middle Paleozoic in age. Thus, if Ordovician-
hosted, Appalachian Mississippi Valley-type deposits are coeval, they must have formed by
middle Paleozoic time and cannot be the product of a late Paleozoic fluid-expulsion event. This
hypothesis has important implications for basin evolution, fluid events, and remagnetization in
the Appalachians.

INTRODUCTION

The most widespread and economically im-
portant Mississippi Valley-type deposits in the
Appalachians (Fig. 1) are found in Lower Or-
dovician shelf carbonates from Alabama to
Newfoundland (Hoagland, 1976). These depos-
its formed from saline brines, making them the
most visible products of dewatering of Appala-
chian sedimentary basins (Colton, 1970; Kesler
et al., 1988, 1989). Unfortunately, a lack of suit-
able minerals with high or variable isotopic ra-
tios has made it difficult to determine directly
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the age of these deposits. Paleomagnetic and iso-
topic age measurements, which have been made
on authigenic minerals in lower Paleozoic car-
bonate rocks in the southern and central Appa-
lachians (Bachtadse et al., 1987; Elliott and
Aronson, 1987; Heamn et al., 1987), have been
used to support the hypothesis that the Missis-
sippi Valley-type mineralization took place dur-
ing late Paleozoic fluid expulsion from the
evolving Appalachian-Ouachita orogen (Leach
and Rowan, 1986; Oliver, 1986; Duane and de
Wit, 1988; Clendenin and Duane, 1990; Bethke

and Marshak, 1990). As discussed below, the
apparent synchroneity of these deposits, along
with their deformational history in Newfound-
land, limits the age of mineralization to middle
Paleozoic time.

GEOLOGIC AND ISOTOPIC
SIMILARITIES OF ORDOVICIAN-
HOSTED MISSISSIPPI
VALLEY-TYPE DEPOSITS
Ordovician-hosted Mississippi  Valley-type
deposits in the Appalachian orogen have nu-
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Figure 1. Distribution of Cambrian to Early Ordovician platform carbonates in Appalachian orogen (after Williams, 1978) showing Mississippi
Valley-type deposits and prospects hosted by Knox Group (Tennessee), Beekmantown Group (Pennsylvania), and St. George Group (Newfound-
land) (after Secrist, 1924; Currier, 1935; Edmunson, 1938; Maher, 1970; Smith, 1977; D. F. Sangster, 1989, written commun.). SW = Sweetwater,
MJC = Mascot-Jefferson City, CR = Copper Ridge, FB = Fall Branch, M = Marion, T = Timberville, FV = Friedensville, CP = central Penngylvania, NZ =
Newfoundland zinc. Austinville-lvanhoe district in Virginia, which is sometimes included in this group (Hearn et al., 1987; Swinden et al., 1988) is in
Lower Cambrian Shady Dolomite.
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merous geologic characteristics that distinguish
them as a group. They are hosted by the same
shelf carbonate sequence, known as the Knox
Group in Alabama, Georgia, Tennessee, and
southern Virginia, the Beekmantown Group in
northern Virginia, Maryland, and Pennsylvania,
and the Port-au-Port and St. George Groups in
Newfoundland (Hoagland, 1976). Mineraliza-
tion is closely associated with karst breccias that
formed during Middle to Late Ordovician
emergence of the carbonate platform (Harris,
1971; Howe, 1981; Lane, 1989). Sphalerite in
the deposits is anomalously low in iron and en-
riched in cadmium (Hoagland, 1976). Galena
and chalcopyrite are rare (Sangster, 1983), and

barite and fluorite are important only in distinct
districts. The only common gangue mineral is
sparry dolomite.

Most fluid-inclusion filling temperatures
range from about 110 to 170 °C for the sphaler-
ite deposits (Roedder, 1971; Zimmerman and
Kesler, 1981; Howe, 1981; Taylor et al., 1983;
Lane, 1989). Limited sulfur isotopic data (Table
1) suggest that most of these deposits contain
unusually heavy sulfur. Analyses reported here
for the eastern Tennessee and Newfoundland
deposits, as well as those reported by Howe
(1981) for some Nittany arch (central Pennsyl-
vania) mineralization, are between +20%0 and
+30%0 (Fig. 2), in contrast to values from other

TABLE 1. SULFUR ISOTOPE COMPOSITIONS, APPALACHIAN MISSISSIPPI VALLEY-TYPE DEPOSITS
Location, sample number mineral 34
(°/00)
Eastern Tennessee
Mascot-Jefferson City district
New Market West, NMW-51 Sphalerite +31.0
Young, YNG-51 Sphalerite +29.9
Copper Ridge district
Flat Gap, ER-65-43 Sphalerite +28.7
Flat Gap, ER-65-43 Galena +24.89
Pennsylvania
Friedensville district
FV-1 Sphalerite - 4.6
Fv-1050A1 Sphalerite - 6.1
Newfoundland
Newfoundland Zinc deposit
NFZ-1 Sphalerite +21.0
NFZ-6 Sphalerite +22.3
Note: Data for Copper Ridge distriect are from Rye (1%974), and samples were

described in Roedder (1971).
samples from our collections.

Other analyses were performed by Geochron,
Average isotope ratio for Ordovician-hosted Appalachian

Inc. on

deposits (excluding values <+5%00 and including data of Howe, 1981) is +23.9%/00.

TABLE 2. LEAD ISOTOPE RATIOS, APPALACHIAN MISSISSIPPI VALLEY-TYPE DEPOSITS
Location Mine 206pb/ 207pL / 208ph/
204ph 204pp 204pp

Eastern Tennessee

Mascot-Jefferson City Immel 19.414 15,729 39.507

Mascot-Jefferson City Jefferson City 19.56 15.77 39.66

Copper Ridge Flat Gap 19.17 15.76 39.46
Pennsylvania

Friedensville 19.24 15.68 39.66

Bamford 18.74 15.75 38.70

German Valley (Califon) 18.68 15.68 38.39

Birmingham Keystone (?)} 18.61 15.71 38.80
Newfoundland (average) 17.970 15.487 38.608

Note: Analyses for eastern Tennessee and Pennsylvania are from Brown (1962),
(1966), and this study (Immel Mine analysis by D.

et al.
University of Alberta).
et al., 1988).

Newfoundland average is from data in Table 1

Heyl
Cumming,
(Swinden
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Maississippi Valley-type deposits in North Amer-
ica, which are generally below +20%c0. The re-
sults reported here for the Friedensville deposit,
which are considerably lighter than those seen in
the other deposits, might represent contamina-
tion of the mineralizing system by diagenetic
sulfur, as also seen in some Nittany arch deposits
(Howe, 1981). Although lead isotopic composi-
tions of these deposits, including one new analy-
sis of galena from the Immel mine (Table 2),
form separate clusters for each district, all of the
clusters are less radiogenic than most lead in
other North American deposits (Fig. 3).

RELATION OF MISSISSIPPI
VALLEY-TYPE MINERALIZATION
TO REGIONAL DEFORMATION

The simplest interpretation of the geologic
and geochemical similarities listed above is that
the Ordovician-hosted, Appalachian Mississippi
Valley-type deposits are coeval. Although both
ore and host rocks are deformed (Hoagland,
1976), a predeformation age is indicated for
mineralization by sphalerite “sands,” where lay-
ers of dolomite with local detrital sphalerite fill
openings in the ore-bearing breccias (Kendall,
1960; Hoagland, 1976, Fig. 10). Parallelism be-
tween layering in these sands and that in the
enclosing rocks, especially at Copper Ridge (Fig.
1), where dips are relatively steep (Hill, 1969),
requires that mineralization preceded deforma-
tion. Thus, the age of deformation provides a
younger limit on the age of Appalachian Missis-
sippi Valley-type mineralization.

Regional deformation in the Valley and
Ridge province of the southern and central Ap-
palachians, where Mississippi Valley-type min-
eralization is best known, is dominated by the
Permian-Carboniferous Alleghanian orogeny
(Fig. 4; Rodgers, 1967; Lash and Drake, 1984;
Hatcher, 1987; Horton et al., 1989). In contrast,
geologic relations in the Newfoundland Appala-
chians indicate that deformation was early to
middle Paleozoic in age (Fig. 4; Williams, 1984;
van der Pluijjm and van Staal, 1988). In New-
foundland, Middle Ordovician obduction of the
Humber Arm and Hare Bay ocean-floor alloch-
thons onto lower Paleozoic continental-margin
deposits (Williams, 1984) was followed by pre~
Late Devonian folding and thrusting (Cawood
and Williams, 1988), which deformed the shelf
carbonates and associated Mississippi Valley-
type ores (Lane, 1989). Late Paleozoic folding
and thrusting is absent in these areas of New-
foundland (see also Rast, 1988), although minor
late Paleozoic deformation is observed in nar-
row zones around strike-slip faults (Fig. 4B)
such as near Deer Lake.

It follows from these observations that, if the
geologically and geochemically similar Ordovi-
cian-hosted Mississippi Valley-type deposits are
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Figure 2. Frequency diagrams comparing sulfur isotopic
ratios in sphalerite from Ordovician-hosted Mississippi Val-
ley-type (MVT) deposits in Appalachian orogen with those
in other North American MVT deposits. Data are from
Table 1 (this paper), Rye (1974), Howe (1981), and compila-
tion of Richardson et al. (1988). Some prospects in Nittany
arch area and Friedensville district in eastern Pennsylvania
contain distinctly lighter sulfur, which could be from di-
agenetic pyrite such as obhserved in Nittany arch area

(Howe, 1981).

coeval throughout the Appalachians, they must
have formed between Middle Ordovician and
Middle Devonian time. Permissive evidence for
an age in this range is provided by the isotopic
data. For example, sulfur isotopic ratios of
sphalerite in these deposits are most similar to
Cambrian and Ordovician seawater sulfate
(Claypool et al., 1980). With the exception of
some values up to +25%0 in Devonian time,
younger seawater sulfate was lighter and could
not have been a source of the sulfur in these
deposits. Similarly, the relatively nonradiogenic
character of lead in these deposits and its ho-
mogeneity favor derivation from young, well-
mixed sediment.

Although none of these observations is con-
clusive, combined they argue strongly that for-
mation of Ordovician-hosted, Appalachian Mis-
sissippi  Valley-type mineralization was not
confined to late Paleozoic time, and that signifi-
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cant mineralization took place earlier in the evo-
lution of the orogen. This hypothesis is sup-
ported by a recent Middle Devonian Rb-Sr
isochron age (377 29 Ma) obtained for sphal-
erite separates from the Coy mine in eastern
Tennessee (Nakai et al., 1990). Although the
host for Sr in this sphalerite could be feldspar or
phyllosilicate, the data record an important pre-
late Paleozoic fluid event in the western part of
the southern Appalachians. In view of the sug-
gested relation between mineralization and re-
magnetization (Oliver, 1986), we note that the
Middle Ordovician-Middle Devonian time in-
terval suggested here for Mississippi Valley—type
mineralization corresponds to that determined
by Hodych (1989) for paleomagnetic remagnet-
ization of the Table Head Group platform car-
bonates in western Newfoundland. Thus, late
Paleozoic fluid expulsion in the southern Appa-
lachians apparently reset all previous paleomag-

Early and middle Paleozoic
deformation

Late Paleozoic deformation

Figure 4. Regional distribution of Paleozoic
deformation in Appalachian orogen (modified
from Williams, 1984).

netic directions, primary as well as remagnet-
ized, including those in the Mississippi Valley-
type ore (Bachtadse et al., 1987).

CONCLUSIONS

Geologic and geochemical similarities among
Ordovician-hosted, Appalachian Mississippi
Valley-type deposits suggest that they formed
by generally similar processes at approximately
the same time. Thus, the observation that ores in
Newfoundland were deformed before Late
Devonian time limits the age of Mississippi Val-
ley-type mineralization in the Appalachian oro-
gen to Middle Ordovician to Middle Devonian.
This conclusion is important for considerations
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of (1) basin evolution, (2) fluid events, and
(3) remagnetization in the southern and central
Appalachians, where the early history is poorly
preserved and the area is dominated by the late
Paleozoic Alleghanian overprint. In particular,
the temporal constraints imply the occurrence of

. . . i
more than one Paleozoic regional fluid flow

event in eastern North America.
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