Differential displacement and rotation in thrust fronts: A magnetic, calcite twinning and palinspastic study of the Jones Valley thrust, Alabama, US Appalachians

James S. Hnat a,*, Ben A. van der Pluijm a, Rob Van der Voo a, William A. Thomas b

a Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109-1005, USA
b Department of Geological Sciences, University of Kentucky, Lexington, KY 40506-0053, USA

Received 7 May 2007; received in revised form 23 January 2008; accepted 25 January 2008
Available online 13 February 2008

Abstract

To test whether a displacement gradient along a curved fault structure requires rotation, we studied the northeast-striking, northwest-verging, large-displacement Jones Valley thrust fault of the Appalachian thrust belt in Alabama. Paleomagnetism, anisotropy of magnetic susceptibility (AMS) and calcite twinning analysis, complemented by balanced cross-sections, were used to evaluate the presence and magnitude of any rotation. Remanence directions from the Silurian Red Mountain Formation reveal a prefolding magnetization acquired in the Pennsylvanian, whereas magnetic analysis shows a strong, bedding-parallel compaction fabric with a tectonic lineation. Paleomagnetic directions and magnetic lineations reveal no relative rotation between the hanging wall and footwall of the thrust fault. Rather than rotation, therefore, we interpret the Jones Valley thrust sheet as a structure that developed in a self-similar fashion, with lateral growth of the fault surface occurring coincident with growth into the foreland.

© 2008 Elsevier Ltd. All rights reserved.

Keywords: Rotations; Southern Appalachians; Birmingham anticlinorium; Magnetic fabric; Paleomagnetism; Thrust kinematics; Jones Valley thrust; Red Mountain Formation

1. Introduction

Rotations have been recognized as common features in most foreland thrust belts (McCaig and McClelland, 1992; Allerton, 1998; Macedo and Marshak, 1999; Marshak, 2004; Weil and Sussman, 2004; Sussman et al., 2004). On the scale of individual thrust sheets, thrust displacement gradients along strike of a structure are often cited as the cause of that rotation (Bates, 1989; Allerton et al., 1993; Allerton, 1998; Bayona et al., 2003; Pueyo et al., 2004; Sussman et al., 2004; Soto et al., 2006; Oliva-Urcia and Pueyo, 2007), but this hypothesis has remained a topic of debate. Identifying rotations in thrust sheets is also important for understanding the three-dimensional development of thrust belts and has implications for evolution on the orogenic scale (i.e., oroclinal bending; Marshak, 2004; Weil and Sussman, 2004; Sussman et al., 2004). Along rotated thrust sheets, traditional methods of restoring balanced cross-sections underestimate the amount of true displacement, because plane strain conditions do not apply. Whether rotations predicted from variations in displacement along strike, as seen in a series of strike perpendicular balanced cross-sections, necessitate significant vertical-axis rotations has been tested only in a few cases. This provided the motivation for our integrated study of the Jones Valley thrust fault in the southern US Appalachians.

Rotations have been recognized in many thrust belts, especially through paleomagnetism (e.g., McCaig and McClelland,
1992; Bayona et al., 2003; Sussman et al., 2004; Satolli et al., 2005), which has a resolution of about 10°, depending on the quality of the data (Weil and Sussman, 2004). Many of these investigations, however, focused on regional kinematics in areas where significant variation in strike of bedding, faults and fold axial surfaces is observed (Schwartz and Van der Voo, 1984; Weil et al., 2000, 2001; Speranza et al., 2003). Less common are studies that explore the role of rotations in the evolution of an individual thrust sheet, which often do not display a large variation in strike orientation between the hanging wall and footwall. In the Subbetic Zone of southern Spain, Allerton (1994) showed that 68° of rotation on an individual structure was accommodated by a change in thrust displacement of 8.5 km over 3.7 km along strike. While this example is perhaps extreme, the evolution of the Santo Domingo anticline, an 80 km long structure in the External Sierras of the Southern Pyrenees (Pueyo et al., 2002, 2004; Oliva-Urcia and Pueyo, 2007), may be a more common case. In that area, the thrust displacement gradient from a series of four balanced cross-sections predicts a clockwise rotation that is matched by the (~25°) rotation seen in paleomagnetic analysis.

Relative rotations can be identified via other methods other than paleomagnetism. Magnetic lineations determined from anisotropy of magnetic susceptibility (AMS) can also be used for identification of vertical-axis rotations (Somma, 2006; Cifelli et al., 2004). Additionally, a method not using magnetic properties for recognizing rotations involves paleostress orientations from analysis of calcite twins (e.g., Craddock et al., 1988; Kollmeier et al., 2000; Ong et al., 2007). Changes in the orientations of other pre-thrusting features such as cleavage, fractures and paleocurrent data can also be used (Nickelsen, 1979; Gray and Mitra, 1993; Apotria, 1995).

The Jones Valley thrust sheet in central Alabama (Figs. 1A,B) offers an excellent opportunity to study the role, if any, of rotation in the formation of a curved fault structure. On the basis of restoration of balanced cross-sections described in this paper, the Jones Valley thrust fault with the associated detachment fold from which it emerged, progressively increases in displacement along strike over ~80 km, where it appears to decrease in

Fig. 1. (A) Map of Alleghanian thrust belt in Alabama and associated features (Redrawn from Thomas and Bayona, 2002). (B) Geologic map of study area based on Szabo et al. (1988). Lines labeled 13–18 represent cross-section lines of Fig. 2. OV = Opossum Valley thrust fault; JV = Jones Valley thrust; BC = Blue Creek fault; Birm A = Birmingham anticlinorium; HTZ = Harpersville transverse zone; BTZ = Bessemer transverse zone. Paleomagnetic (circles) from both this study and Hodych et al. (1985) and calcite twinning (triangles) sites are also shown.
displacement and is obscured by a cover of younger sediments to the southwest. A minimum rotation of 15° and upwards of 23° would be required to accommodate this displacement change. We considered this possibility by testing the hypothesis that the displacement gradient is the result of the self-similar evolution of the detachment fold and thrust rather than an artifact of rotation.

2. Structural setting

2.1. Appalachian foreland thrust belt

The study area lies within the Appalachian foreland thrust belt in Alabama (Fig. 1A) and is characterized by late Paleozoic (Alleghanian) deformation in the form of large scale, northeast-striking, generally northwest-verging thrust faults and associated folds (Rodgers, 1970; Hatcher et al., 1989; Thomas and Bayona, 2005). To the northwest, the belt is bounded by the Black Warrior foreland basin, consisting of late Paleozoic undeformed strata, and to the southeast, by the metamorphic thrust sheets of the Talladega slate belt and the Piedmont (Thomas and Bearce, 1986; Tull, 1998).

2.2. Jones Valley thrust fault

The large-displacement Jones Valley thrust fault and the associated Birmingham anticlinorium (Figs. 1B and 2) are in the southernmost exposed part of the Appalachian thrust belt. The Jones Valley thrust is a northeast-striking, northwest-verging thrust fault (Szabo et al., 1988) acting as the roof of a ductile duplex (defined as mushwad; Thomas, 2001; Thomas and Bayona, 2005), which consists of tectonically thickened Cambrian shales in the core of the Birmingham anticlinorium. The location of the Jones Valley thrust ramp is dictated by a down-to-the-southwest basement normal fault beneath the allochthon. Ahead of the Jones Valley thrust, within the anticlinorium, the Opossum Valley thrust fault (Figs. 1B and 2a), a footwall splay, parallels the Jones Valley thrust; however, at the Bessemer transverse zone, the Opossum Valley thrust sheet ends abruptly at a lateral ramp. The footwall of the Jones Valley/Opossum Valley thrust system within the forelimb of the Birmingham anticlinorium is continuous and steeply dipping to overturned to the northwest, whereas the hanging wall is gently dipping to the southeast and forms the trailing limb of the anticlinorium. The asymmetry of the anticlinorium and presence of the PM/detached duplex defines the Birmingham anticlinorium as a complex detachment fold offset by the Jones Valley/Opossum Valley thrust system (Thomas, 2001; Thomas and Bayona, 2005). Little difference exists between the strike of bedding in the footwall and hanging wall along the length of the fault except for a minor variation at the position of the Bessemer transverse zone. Bayona et al. (2003) interpreted rotations, using changes in local strike orientations at lateral ramps, as well as thrust displacement gradients in transverse zones to the northeast of the study area. However, similar to the work of Allerton (1994), the lack of significant variation in map-view strike orientation between hanging wall and footwall of the Jones Valley thrust gives no information as to the presence or amount of rotation.

In the northeast, the Jones Valley thrust sheet emerges from a small anticline in the crest of the Birmingham anticlinorium. The appearance of the Jones Valley thrust fault in the northeast is along the alignment of the cross-strike links in the Harpersville transverse zone. Along strike to the southwest, the Jones Valley thrust fault crosses the Bessemer transverse zone, where a lateral ramp accommodates displacement at the end of the leading Opossum Valley thrust fault. Farther to the southwest, other than the small displacement Blue Creek fault and a very minor backthrust, the Jones Valley thrust fault is the only structure accommodating shortening within the anticlinorium. At the southwest end of the study area, the Jones Valley thrust fault and associated Birmingham anticlinorium are covered by Cretaceous coastal plain sediments.

2.3. Displacement along the Jones Valley thrust fault

A series of previously published cross-sections in the Appalachian thrust belt of Alabama allow comparison of displacement magnitudes along strike for the Jones Valley thrust fault (Fig. 2) (Thomas and Bayona, 2005). The cross-sections were constructed perpendicular to thrust belt strike and based on seismic profiles, outcrop data and wells. Palinspastic restoration was completed using a combination of bed-length and area-balancing techniques (e.g. Dahlstrom, 1969; Marshak and Mitra, 1988).

While displacement estimates in the southern Appalachians are not as well constrained as those in other, younger thrust belts (e.g., Pyrenees, Wyoming-Idaho, Taiwan belts) due to the lack of preserved hanging wall cutoffs, the series of cross-sections (Fig. 2; Thomas and Bayona, 2005) provides estimates of minimum displacement on the Jones Valley thrust fault (Table 1). A comparison of the palinspastically restored cross-sections of the Jones Valley thrust sheet shows a displacement increase of greater than 20 km from the northeast termination (cross-section 13 and 14) to the southwest (cross-section 17 and 18). Thrust displacement on is near zero at the northeast termination (cross-section 13 and 14), where regional shortening is largely accommodated by folding in the Birmingham anticlinorium. Displacement increases to more than 20 km farther southwest (cross-section 17) and appears to decrease slightly farther to the southwest (cross-section 18). A minimum vertical-axis rotation of approximately 15° could produce this strike-parallel displacement gradient. This estimate is a minimum:

1) Rotation would entail out-of-plane motion of the thrust sheet, thereby underestimating displacement values from the strike-perpendicular cross-sections.
2) Hangingwall cutoffs are not preserved and displacement estimates are at a minimum in the southwestern section (cross-section 17). However, estimates are not a minimum in the northeastern section (cross-section 13 and 14) where much of the shortening is taken up in the folding of the Birmingham anticlinorium (Table 1). This situation would, therefore allow a greater angle of rotation.
3) Thermal data from vitrinite reflectance of Pennsylvanian coals suggest a high temperature anomaly in the eroded footwall of the Jones Valley thrust sheet (Winston, 1990; O’Hara et al., 2006). Assuming that the thermal anomaly results from a greater cover due to additional tectonic burial by the Jones Valley thrust sheet, greater displacement and hence rotation magnitude would be expected.

While the lower limit of the postulated rotation is near the resolution limit for paleomagnetism ($\sim 10^\circ$), the high quality
of the paleomagnetic data from this study allows for the determination of role of vertical-axis rotations in the evolution of the Jones Valley thrust sheet.

Assuming negligible internal shortening, which is typical of foreland thrust sheets of the southern Appalachians (House and Gray, 1982; Hatcher et al., 1989), one interpretation of the displacement geometry of the thrust sheet involves a vertical-axis rotation of 15°—23° of the Jones Valley thrust sheet toward the foreland, whereas an alternative scenario simply involves differential translation on the thrust (Fig. 3). The rotation model has a fixed hinge point and treats the thrust sheet as a rigid body. Conversely, the differential translation model requires that there is no fixed hinge and that the thrust grew laterally while displacing toward the foreland. This self-similar style growth (Elliott, 1976; Fischer and Woodward, 1992) would require internal deformation of the thrust sheet in the form of minor shear strain, with implications for the continuity of the thrust sheet (Wilkerson, 1992).

The relatively straight frontal ramp of the Jones Valley thrust fault, the large displacement gradient from northeast to southwest and the presence of suitable rock types allows for a relatively simple test of the role of vertical-axis rotation for the evolution of the Jones Valley thrust sheet. To investigate both the occurrence and amount of rotation, we employ paleomagnetic and anisotropy of magnetic susceptibility (AMS) analysis of the Silurian Red Mountain Formation, as well as calcite twinning of the underlying Chickamauga Group limestones.

3. Unit description

The stratigraphy of the study area is the regionally characteristic succession in most of the southern Appalachians (e.g. Butts, 1926; Chowns and McKinney, 1980; Thomas, 1977). Lower to Middle Cambrian sediments (Chilhowee Group, Shady Dolomite, Rome Formation and Conasauga Formation) associated with Iapetan rifting overlie faulted Precambrian basement and represent the regional basal detachment level (Thomas, 1991). Mudstones and limestones of the Middle Cambrian Conasauga Formation form the oldest exposed rocks and represent the major ductile unit involved in duplex development. The Cambro-Ordovician Knox Group dolomites and limestones form the regional stiff layer contained in thrust sheets (Thomas and Bayona, 2005).

Unconformably overlying the Knox Group are limestones of the Middle to Upper Ordovician Chickamauga Group. The Chickamauga Group consists of a range of limestone units, including calcareous mudstones, peloidal grainstones and fossiliferous grainstones (Rindsberg and Osborne, 2001; Rindsberg et al., 2003). For calcite twinning analysis, emphasis was placed on sampling the coarser grainstones.

The Red Mountain Formation is a heterogeneous clastic unit that comprises the entire package of Silurian stratigraphy within the thrust belt in Alabama (Chowns and McKinney, 1980). It unconformably overlies the Chickamauga Group limestones. Biostratigraphic studies indicate that the unit ranges from Early Silurian (Llandoverian) age (Berry and Boucot, 1970) to Late Silurian (Pridolian) age (Berdan et al., 1986) with various internal disconformities (Rindsberg et al., 2003). The lithology of the Red Mountain Formation includes massive and laminated reddish hematitic sandstones, oolitic ironstones, interbedded shales and gray sandstone, lesser pebble conglomerate beds and some minor limestone lenses. Sampling of the Red Mountain Formation focused on

<table>
<thead>
<tr>
<th>Cross-section</th>
<th>Distance from tip (km)</th>
<th>Displacement (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>4.8</td>
<td>2.0</td>
</tr>
<tr>
<td>15</td>
<td>20.9</td>
<td>5.0</td>
</tr>
<tr>
<td>16</td>
<td>42.4</td>
<td>14.0</td>
</tr>
<tr>
<td>17</td>
<td>59.9</td>
<td>21.0</td>
</tr>
<tr>
<td>18</td>
<td>73.2</td>
<td>16.0</td>
</tr>
</tbody>
</table>

Displacements are minima, as hanging wall cutoffs are not preserved in the Appalachians.

Fig. 3. Schematic illustration showing two scenarios for the development of a thrust sheet with the same displacement gradient. In (A), the thrust sheet rotates to its final position. In (B), the thrust sheet displaces differentially along strike.
the hematitic sandstones and ironstones best suited for paleomagnetic analysis. In the study region, the Red Mountain Formation is unconformably overlain by the Devonian Chattanooga Shale, Mississippian Maury Shale or the Mississippian Fort Payne Chert, although thin units of the Devonian (Frog Mountain Formation) are present in some locations. The youngest units involved in the deformation are Pennsylvanian clastic deposits.

4. Paleomagnetism and magnetic susceptibility

4.1. Methods

Samples were collected from eleven sites in the Red Mountain Formation along the strike of the Jones Valley thrust sheet. Sampling focused on red sandstones and ironstones that had been successfully analyzed in past studies of the formation (Perroud and Van der Voo, 1984; Hodych et al., 1985). Four sites are located on the northwest-dipping to overturned footwall and seven sites on the southeast-dipping hanging wall (Fig. 1B). Site selection was controlled by both limited outcrop availability in this area due to the high degree of weathering, and position along strike with respect to the Jones Valley thrust fault. Between seven and twelve 2.5 cm diameter samples were collected at each site using a portable gasoline powered drill, so 106 total samples were collected. Bedding attitude and core orientations were measured using a magnetic compass. Prior to analysis, the samples were cut into 2.5 × 2.2 cm cylindrical specimens at the University of Michigan’s Paleomagnetic Laboratory for paleomagnetic and anisotropy of magnetic susceptibility (AMS) work.

All 2.5 × 2.2 cm specimens of the Red Mountain Formation were first measured for anisotropy of magnetic susceptibility (AMS). Specimens were measured in the fifteen-position method of Jelinek (1978) on a Geofyzika Brno Kappabridge KLY-2.03 susceptibility-bridge at a frequency of 920 Hz (coil sensitivity is approximately 5 × 10⁻⁷ SI). Analysis was performed using linear perturbation analysis producing a statistical bootstrap of the data using the ‘bootams’ program of Tauxe (1998). Bootstrap eigenvectors are plotted and displayed as a smear of points on a stereonet (e.g., Pares and van der Pluijm, 2002a). To infer relative contributions of ferromagnetic (generally magnetite and hematite) and paramagnetic (commonly phyllosilicate) grains to the susceptibility, bulk susceptibility was measured both at room temperature (290K) and at the temperature of liquid nitrogen (77K). Bulk susceptibility of ferromagnetic grains does not change at low temperature while that of paramagnetic grains increases 3.8 times at 77K according to the Curie–Weiss law (Richter and van der Pluijm, 1994; Pares and van der Pluijm, 2002b).

Thermal demagnetization was carried out on all samples within a magnetically shielded, low-field room using an Analytical Service Co. (ASC) thermal demagnetizer. Samples were measured in a three-axis, cryogenic 2G Enterprises Model 755 Superconducting magnetometer after each heating step, with stepwise demagnetization ranging from 100 °C and 680 °C. Demagnetization was discontinued when the sample intensity approached zero percent of the natural remanent magnetization (NRM) or became erratic because of spurious magnetizations acquired during the cooling process.

Principal component analysis (Kirschvink, 1980) of linear vectors selected from orthogonal projection demagnetization plots (Zijderveld, 1967) was used to calculate the characteristic remanent magnetization (ChRM) with the SuperIAPD software package (Torsvik et al., 1999). Individual sample ChRM directions were used to determine site means using Fisher’s

Fig. 4. Representative thermal demagnetization plots of the Red Mountain Formation in geographic coordinates and associated intensity plots. Intensity plots show normalized intensity versus temperature in degrees Celsius. In the demagnetization plots, closed (open) symbols represent vector endpoints plotted in the horizontal (vertical) plane. Temperature steps are in degrees Celsius. (A) Representative footwall sample showing the southeast and up direction. (B, C) Representative hanging wall samples showing southeast and down direction. Sharp decreases in intensity occur near 640 °C in most samples. Ticks represent 50 mA/m.
(1953) method. The age of magnetization relative to deformation was tested using a fold-test on the site mean directions (McElhinny, 1964).

4.2. Paleomagnetic results

Intensities of the NRM for the Red Mountain Formation vary between 10 and 220 mA/m. Stepwise thermal demagnetization typically reveals univectorial decay of a single magnetic component (Fig. 4). Heating steps began at 100 °C intervals up to 400 °C and then were decreased progressively during heating until 10 °C intervals were used above 620 °C. In general, specimen intensity tends to remain stable up to a range from 640 °C to 680 °C, where intensity drops suddenly to <20% of the NRM. This high laboratory unblocking temperature (T_{unb}) indicates that hematite is the carrier of the magnetization, as expected.

In situ, site mean directions for the seven hanging wall sites reveal an intermediate down and southeast direction in all sites (Figs. 4 and 5) while in situ footwall site mean directions display intermediate up and southeast directions except for site FW2, which has a steeply up and southwest direction. After tilt correction, the site means cluster in a southeast down direction of $D = 150.4^\circ$, $I = 18.5^\circ$, $\alpha95 = 4.8^\circ$ and $k = 92.29$ (Table 2). This direction for the Red Mountain

Table 2
Paleomagnetic results from the Red Mountain Formation

<table>
<thead>
<tr>
<th>Footwall</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Strike</th>
<th>Dip</th>
<th>N/Ns</th>
<th>Dec In situ</th>
<th>Inc In situ</th>
<th>Dec Tilt</th>
<th>Inc Tilt</th>
<th>$\alpha95$</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW2</td>
<td>33.304°N</td>
<td>87.076°W</td>
<td>218°</td>
<td>110°</td>
<td>7/7</td>
<td>222.2°</td>
<td>−61.8°</td>
<td>157.3°</td>
<td>15.6°</td>
<td>14.9°</td>
<td>17.27</td>
</tr>
<tr>
<td>FW3</td>
<td>33.323°N</td>
<td>87.057°W</td>
<td>238°</td>
<td>40°</td>
<td>8/9</td>
<td>149.9°</td>
<td>−20.2°</td>
<td>149.9°</td>
<td>19.8°</td>
<td>5.3°</td>
<td>110.31</td>
</tr>
<tr>
<td>FW5</td>
<td>33.352°N</td>
<td>87.037°W</td>
<td>193°</td>
<td>58°</td>
<td>10/10</td>
<td>137.6°</td>
<td>−25.7°</td>
<td>136.9°</td>
<td>23.5°</td>
<td>7.2°</td>
<td>45.53</td>
</tr>
<tr>
<td>FW6</td>
<td>33.646°N</td>
<td>86.743°W</td>
<td>190°</td>
<td>75°</td>
<td>7/9</td>
<td>149.9°</td>
<td>−42.6°</td>
<td>142.5°</td>
<td>24.1°</td>
<td>6.3°</td>
<td>92.69</td>
</tr>
<tr>
<td>Mean</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>4/4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Hodych5</td>
<td>33.645°N</td>
<td>86.743°W</td>
<td>185°</td>
<td>73°</td>
<td>8</td>
<td>145.5°</td>
<td>−33.5°</td>
<td>138.3°</td>
<td>20.2°</td>
<td>4.5°</td>
<td>153</td>
</tr>
<tr>
<td>Hodych6</td>
<td>33.657°N</td>
<td>86.738°W</td>
<td>207°</td>
<td>52°</td>
<td>9</td>
<td>149.6°</td>
<td>−18.9°</td>
<td>151.3°</td>
<td>25.4°</td>
<td>9.4°</td>
<td>31</td>
</tr>
<tr>
<td>Hodych7</td>
<td>33.678°N</td>
<td>86.717°W</td>
<td>214°</td>
<td>41°</td>
<td>8</td>
<td>153.6°</td>
<td>−15.8°</td>
<td>154.4°</td>
<td>20.1°</td>
<td>6.3°</td>
<td>77</td>
</tr>
<tr>
<td>Mean with Hodych sites</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7/7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Hangingwall</td>
<td></td>
</tr>
<tr>
<td>HW1</td>
<td>33.290°N</td>
<td>87.032°W</td>
<td>35°</td>
<td>38°</td>
<td>12/12</td>
<td>169.5°</td>
<td>57.4°</td>
<td>149.7°</td>
<td>25.3°</td>
<td>5.2°</td>
<td>70.04</td>
</tr>
<tr>
<td>HW3</td>
<td>33.340°N</td>
<td>86.970°W</td>
<td>32°</td>
<td>34°</td>
<td>9/9</td>
<td>163.6°</td>
<td>44.6°</td>
<td>151.8°</td>
<td>18.3°</td>
<td>7.6°</td>
<td>46.69</td>
</tr>
<tr>
<td>HW5</td>
<td>33.437°N</td>
<td>86.890°W</td>
<td>42°</td>
<td>20°</td>
<td>11/12</td>
<td>154.2°</td>
<td>25.0°</td>
<td>152.0°</td>
<td>6.6°</td>
<td>6.1°</td>
<td>57.23</td>
</tr>
<tr>
<td>HW7</td>
<td>33.474°N</td>
<td>86.826°W</td>
<td>35°</td>
<td>20°</td>
<td>9/9</td>
<td>146.5°</td>
<td>36.6°</td>
<td>143.0°</td>
<td>17.7°</td>
<td>4.4°</td>
<td>140.66</td>
</tr>
<tr>
<td>HW8</td>
<td>33.496°N</td>
<td>86.789°W</td>
<td>62°</td>
<td>18°</td>
<td>9/9</td>
<td>157.0°</td>
<td>38.4°</td>
<td>156.2°</td>
<td>20.5°</td>
<td>5.7°</td>
<td>81.15</td>
</tr>
<tr>
<td>HW9</td>
<td>33.536°N</td>
<td>86.725°W</td>
<td>58°</td>
<td>15°</td>
<td>11/11</td>
<td>155.2°</td>
<td>29.9°</td>
<td>154.5°</td>
<td>15.0°</td>
<td>5.0°</td>
<td>83.53</td>
</tr>
<tr>
<td>HW10</td>
<td>33.610°N</td>
<td>86.654°W</td>
<td>47°</td>
<td>12°</td>
<td>9/9</td>
<td>161.7°</td>
<td>27.0°</td>
<td>159.8°</td>
<td>16.0°</td>
<td>5.7°</td>
<td>83.24</td>
</tr>
<tr>
<td>Mean</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7/7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Hodych1a</td>
<td>33.495°N</td>
<td>86.788°W</td>
<td>57°</td>
<td>20°</td>
<td>5</td>
<td>150.9°</td>
<td>40.3°</td>
<td>150.2°</td>
<td>20.3°</td>
<td>2.5°</td>
<td>92.99</td>
</tr>
<tr>
<td>Hodych1c</td>
<td>33.495°N</td>
<td>86.788°W</td>
<td>54°</td>
<td>21°</td>
<td>3</td>
<td>150.1°</td>
<td>37.1°</td>
<td>149.6°</td>
<td>16.2°</td>
<td>3.4°</td>
<td>1284</td>
</tr>
<tr>
<td>Hodych1d</td>
<td>33.495°N</td>
<td>86.788°W</td>
<td>54°</td>
<td>21°</td>
<td>11</td>
<td>152.1°</td>
<td>37.9°</td>
<td>150.6°</td>
<td>17.1°</td>
<td>3.7°</td>
<td>156</td>
</tr>
<tr>
<td>Hodych1e</td>
<td>33.495°N</td>
<td>86.788°W</td>
<td>54°</td>
<td>21°</td>
<td>3</td>
<td>146.1°</td>
<td>37.1°</td>
<td>145.7°</td>
<td>16.1°</td>
<td>6.2°</td>
<td>396</td>
</tr>
<tr>
<td>Hodych1f</td>
<td>33.495°N</td>
<td>86.788°W</td>
<td>54°</td>
<td>20°</td>
<td>3</td>
<td>155.1°</td>
<td>47.5°</td>
<td>157.1°</td>
<td>18.5°</td>
<td>9.5°</td>
<td>171</td>
</tr>
<tr>
<td>Hodych2e</td>
<td>33.537°N</td>
<td>86.723°W</td>
<td>34°</td>
<td>13°</td>
<td>6</td>
<td>158.4°</td>
<td>24°</td>
<td>155.6°</td>
<td>13.1°</td>
<td>9°</td>
<td>57</td>
</tr>
<tr>
<td>Hodych3</td>
<td>33.560°N</td>
<td>86.707°W</td>
<td>40°</td>
<td>16°</td>
<td>4</td>
<td>152.5°</td>
<td>37.1°</td>
<td>149.2°</td>
<td>22.1°</td>
<td>10.1°</td>
<td>84</td>
</tr>
<tr>
<td>Mean with Hodych sites</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>14/14</td>
<td>—</td>
<td>—</td>
<td>151.4°</td>
<td>17.4°</td>
<td>3.0°</td>
<td>181.98</td>
</tr>
<tr>
<td>Overall mean</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>11/11</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Overall mean with Hodych sites</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>21/21</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Mean directions are calculated from site means (Fisher, 1953); N/Ns, number of samples (sites) accepted/studied; Dec, declination; Inc, inclination; $\alpha95$, radius of confidence circle in degrees; k, precision parameter (Fisher, 1953). Means calculated with and without sites from Hodych et al. (1985). Site FW2 dip is 110°, indicating overturned bedding.
Formation agrees with those of two previous studies by Perroud and Van der Voo (1984) and Hodych et al. (1985).

4.3. Relative timing of magnetization

To obtain the timing of acquisition of the magnetization, a fold test was carried out on all site means. Progressive unfolding of the site mean directions indicates that the magnetization was acquired prior to tectonic tilt; the precision parameter \(k \) increases from 3.8 at 0% unfolding to 92.3 at 100% unfolding (Fig. 5). Because the footwall sites lie on the steeply dipping forelimb and the hanging wall sites are in the gently dipping trailing limb of the Birmingham anticlinorium, a 100% positive fold test implies that the magnetization was acquired prior to formation of the anticlinorium. Therefore, because the Jones Valley thrust fault and its frontal imbricate, the Opossum Valley thrust fault, are intimately related to the formation of the Birmingham anticlinorium, the magnetization was acquired prior to motion on the Jones Valley thrust fault.

Although the magnetization is clearly pre-deformation (Fig. 5), a conglomerate test by Perroud and Van der Voo (1984) showed a well clustered \(k \approx 170 \), non-random distribution of directions from pebbles from a conglomerate layer, with a tectonically corrected mean direction similar to the other sites. This implies a post-depositional, remagnetized direction for the Red Mountain Formation. Comparison of our calculated paleopole position (38°N 130°E) with the Laurentian apparent polar wander path (APWP: Van der Voo, 1993)

Fig. 6. Lower hemisphere, equal area projections showing AMS tensor properties for each site. Left stereoplot for each site shows calculated sample eigenvectors, with squares representing \(K_{\text{max}} \), triangles representing \(K_{\text{int}} \) and circles representing \(K_{\text{min}} \). The right projection is the bootstrapped eigenvectors derived from the data on the left showing a smear of points that better illustrates the tectonic lineation. All projections are in tilt-corrected coordinates.
indicates that the Red Mountain Formation acquired a remanence by chemical remagnetization during the Pennsylvania, which is in agreement with the conclusions of previous workers (Perroud and Van der Voo, 1984; Hodych et al., 1985).

4.4. AMS results

Anisotropy of Magnetic Susceptibility (AMS) of the Red Mountain Formation reveals a compaction foliation in most sites, as indicated by perpendicular orientation of the minimum susceptibility axes (K_{min}) to the bedding plane (Fig. 6); most AMS ellipsoids display a triaxial shape (Table 3). This foliation is typically strong and dominates most samples, as indicated by the Flinn diagram (Fig. 7A). However, in the footwall, site FW2 shows a spread of K_{min} from horizontal to vertical, creating a swath in the bootstrap eigenvector plot (Fig. 6). Also, site FW5 displays a K_{max} that is bedding-parallel and orthogonal to the trace of the Jones Valley thrust fault. This effect occurs during layer-parallel shortening (LPS) that may be expected on the footwall/leading limb of a fault-related fold (Saint-Bezar et al., 2002).

At many sites, the maximum susceptibility axes (K_{max}) are oriented in a dominantly NE-SW orientation that is approximately parallel to the trace of the Jones Valley thrust fault. This intersection lineation is well defined in all footwall sites. On the hanging wall, it is well developed to the southwest at HW1, HW3 and HW5, as well as HW8. The tectonic lineation is less apparent in HW7, HW9 and HW10, where the AMS ellipsoid represents a purely compaction fabric. While all site means from the hanging wall lie in the oblate realm of the Flinn diagram (Fig. 7A), some footwall site means lie in the prolate domain of the plot, once again indicating greater amounts of LPS in the footwall.

Comparison of the bulk susceptibility at low temperature (~77K) and at room temperature (~290K) reveals a ratio of 1.1 (Fig. 7B). The lack of variation between low temperature and room temperature bulk susceptibilities indicates that the susceptibility is dominated by ferromagnetic grains. As previously mentioned, the high T_{lab} and sharp drop in intensity during thermal demagnetization signify hematite as the dominant ferromagnetic component. Therefore, the susceptibility is inferred to be dominantly carried by hematite.

5. Calcite twinning

5.1. Methods

Both oriented hand samples and standard paleomagnetic cores of fossiliferous limestones of the Middle to Upper Ordovician Chickamauga Group were collected from two sites on the steep to overturned footwall (Sites CFW1—2), two sites to the northeast of the termination of the Jones Valley thrust fault (Sites CFW3—4), and four sites from the hanging wall (Sites CHW1—4) of the Jones Valley thrust sheet for paleostress/strain analysis using calcite twin analysis (Fig. 1B). Since the formation of calcite twins is a strain hardening process (Teufel, 1980), twinning patterns commonly preserve bedding-parallel shortening, recording the earliest deformation (e.g. Groshong, 1972, 1974; Engelder, 1979; Spang and Groshong, 1981), and therefore act as a passive marker to record rotation (Craddock et al., 1988; Kollmeier et al., 2000; Ong et al., 2007). Because of the limited number of suitable samples that could be analyzed, limestone samples were cut into three mutually perpendicular thin sections to maximize data acquisition and were measured on a Zeiss Universal Stage (U-Stage) microscope. Only straight, continuous twinned sets were measured to ensure the most accurate results. The measurements generally followed the procedure in Evans and Groshong (1994). After rotating thin sections into a common coordinate system, compression axes were calculated for each twinset using the method of Turner (1953) and mean paleostress orientations were determined using dynamic analysis of the compression axes (Spang, 1972). Strain tensor determinations using Groshong’s (1972, 1974) method were calculated to separate positive and negative expected values in order to “clean” the data and identify multiple deformations (Teufel, 1980; Groshong et al., 1984). All twinning

Table 3

<table>
<thead>
<tr>
<th>Strike</th>
<th>Dip</th>
<th>N</th>
<th>(\tau_1)</th>
<th>(\tau_1) TIP</th>
<th>(\tau_2)</th>
<th>(\tau_2) TIP</th>
<th>(\tau_3)</th>
<th>(\tau_3) TIP</th>
<th>(\chi_m)</th>
<th>L</th>
<th>F</th>
<th>P</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Footwall</td>
<td></td>
</tr>
<tr>
<td>FW2</td>
<td>218°</td>
<td>110°</td>
<td>7</td>
<td>0.33629</td>
<td>48.4°/15.5°</td>
<td>0.33240</td>
<td>244.1°/74.0°</td>
<td>0.33131</td>
<td>139.5°/4.1°</td>
<td>144.42</td>
<td>1.014</td>
<td>1.005</td>
<td>1.020</td>
</tr>
<tr>
<td>FW3</td>
<td>238°</td>
<td>40°</td>
<td>9</td>
<td>0.33839</td>
<td>222.6°/5.8°</td>
<td>0.33415</td>
<td>312.8°/1.5°</td>
<td>0.32746</td>
<td>57.0°/84.0°</td>
<td>508.46</td>
<td>1.014</td>
<td>1.021</td>
<td>1.035</td>
</tr>
<tr>
<td>FW5</td>
<td>193°</td>
<td>58°</td>
<td>10</td>
<td>0.33725</td>
<td>203.1°/11.7°</td>
<td>0.33363</td>
<td>61.6°/75.1°</td>
<td>0.32912</td>
<td>295.0°/9.0°</td>
<td>252.14</td>
<td>1.012</td>
<td>1.016</td>
<td>1.027</td>
</tr>
<tr>
<td>FW6</td>
<td>190°</td>
<td>75°</td>
<td>9</td>
<td>0.33522</td>
<td>202.0°/22.9°</td>
<td>0.33318</td>
<td>42.7°/65.7°</td>
<td>0.33160</td>
<td>295.3°/7.7°</td>
<td>350.93</td>
<td>1.009</td>
<td>1.008</td>
<td>1.016</td>
</tr>
<tr>
<td>Hangingwall</td>
<td></td>
</tr>
<tr>
<td>HW1</td>
<td>35°</td>
<td>38°</td>
<td>12</td>
<td>0.33590</td>
<td>209.8°/9.1°</td>
<td>0.33432</td>
<td>112.7°/37.7°</td>
<td>0.32978</td>
<td>311.2°/50.8°</td>
<td>371.06</td>
<td>1.005</td>
<td>1.015</td>
<td>1.019</td>
</tr>
<tr>
<td>HW3</td>
<td>32°</td>
<td>34°</td>
<td>9</td>
<td>0.33658</td>
<td>34.5°/3.1°</td>
<td>0.33390</td>
<td>127.1°/40.1°</td>
<td>0.32951</td>
<td>300.8°/49.8°</td>
<td>664.96</td>
<td>1.009</td>
<td>1.014</td>
<td>1.023</td>
</tr>
<tr>
<td>HW5</td>
<td>42°</td>
<td>20°</td>
<td>12</td>
<td>0.33761</td>
<td>206.6°/5.3°</td>
<td>0.33363</td>
<td>116.3°/3.3°</td>
<td>0.32876</td>
<td>354.0°/83.8°</td>
<td>498.02</td>
<td>1.012</td>
<td>1.015</td>
<td>1.027</td>
</tr>
<tr>
<td>HW7</td>
<td>35°</td>
<td>20°</td>
<td>9</td>
<td>0.33857</td>
<td>238.6°/0.7°</td>
<td>0.33805</td>
<td>328.7°/6.7°</td>
<td>0.32338</td>
<td>142.5°/83.2°</td>
<td>802.81</td>
<td>1.004</td>
<td>1.008</td>
<td>1.052</td>
</tr>
<tr>
<td>HW8</td>
<td>62°</td>
<td>18°</td>
<td>9</td>
<td>0.33509</td>
<td>42.4°/1.1°</td>
<td>0.33394</td>
<td>132.5°/4.6°</td>
<td>0.33097</td>
<td>299.1°/85.3°</td>
<td>593.03</td>
<td>1.004</td>
<td>1.017</td>
<td>1.020</td>
</tr>
<tr>
<td>HW9</td>
<td>58°</td>
<td>15°</td>
<td>11</td>
<td>0.33806</td>
<td>40.6°/2.2°</td>
<td>0.33769</td>
<td>131.2°/14.0°</td>
<td>0.32426</td>
<td>301.9°/75.8°</td>
<td>683.68</td>
<td>1.003</td>
<td>1.040</td>
<td>1.044</td>
</tr>
<tr>
<td>HW10</td>
<td>47°</td>
<td>12°</td>
<td>9</td>
<td>0.33567</td>
<td>45.5°/6.7°</td>
<td>0.33423</td>
<td>137.2°/13.9°</td>
<td>0.33010</td>
<td>290.3°/74.5°</td>
<td>223.70</td>
<td>1.005</td>
<td>1.013</td>
<td>1.018</td>
</tr>
</tbody>
</table>

N, number of specimens; \(\tau_n\) TIP, Trend and plunge of eigenvectors in situ; \(\chi_m\), mean bulk susceptibility; \(L = \tau_1/\tau_5\); \(F = \tau_2/\tau_5\); \(P = \tau_3/\tau_5\); \(T = 2^{\pi((\log(\tau_3/\tau_5))/\log(\tau_1/\tau_5))}\).
Calcite twinning analysis reveals compression directions that are mostly within the bedding plane and tension directions that are approximately orthogonal to the bedding plane and tension direction.

The Turner stress axes, (\(s_1, s_2, s_3\)), which are approximately orthogonal to the bedding plane, are defined in Table 4. Calculated strain-axis orientations are similar to the Turner stress axes, indicating a preferential fabric-related fabric in all cases. However, the Turner stress axes (\(s_1, s_2, s_3\)) are not always within the bedding plane and tension direction. Calculated strain-axis orientations reveal compression directions that are mostly within the bedding plane and tension directions that are approximately orthogonal to the bedding plane.

Table 4: Calcite twinning results from the Ordovician Chichamanga limestone.

<table>
<thead>
<tr>
<th>Location</th>
<th>Latitude, Longitude</th>
<th>Dip</th>
<th>N</th>
<th>% NEV</th>
<th>% Mean</th>
<th>% NEV</th>
<th>% Mean</th>
<th>% NEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHW1</td>
<td>33.45</td>
<td></td>
<td>60</td>
<td>0.017</td>
<td>0.358</td>
<td>0.017</td>
<td>0.358</td>
<td></td>
</tr>
<tr>
<td>CHW2</td>
<td>33.55</td>
<td></td>
<td>41</td>
<td>0.017</td>
<td>0.358</td>
<td>0.017</td>
<td>0.358</td>
<td></td>
</tr>
<tr>
<td>CHW3</td>
<td>33.55</td>
<td></td>
<td>41</td>
<td>0.017</td>
<td>0.358</td>
<td>0.017</td>
<td>0.358</td>
<td></td>
</tr>
<tr>
<td>CHW4</td>
<td>33.71</td>
<td></td>
<td>41</td>
<td>0.017</td>
<td>0.358</td>
<td>0.017</td>
<td>0.358</td>
<td></td>
</tr>
<tr>
<td>CFW1</td>
<td>33.18</td>
<td></td>
<td>60</td>
<td>0.017</td>
<td>0.358</td>
<td>0.017</td>
<td>0.358</td>
<td></td>
</tr>
<tr>
<td>CFW2</td>
<td>33.50</td>
<td></td>
<td>41</td>
<td>0.017</td>
<td>0.358</td>
<td>0.017</td>
<td>0.358</td>
<td></td>
</tr>
<tr>
<td>CFW3</td>
<td>33.71</td>
<td></td>
<td>41</td>
<td>0.017</td>
<td>0.358</td>
<td>0.017</td>
<td>0.358</td>
<td></td>
</tr>
<tr>
<td>CFW4</td>
<td>33.71</td>
<td></td>
<td>41</td>
<td>0.017</td>
<td>0.358</td>
<td>0.017</td>
<td>0.358</td>
<td></td>
</tr>
</tbody>
</table>

Note: Number of twin sets; Std Error, nominal error; % Strain, total strain; % NEV, percent negative expected values; % Mean, mean negative expected values; % NEV, number of negative expected values; % Mean, mean negative expected values; % NEV, number of negative expected values; % Mean, mean negative expected values.

Figure 7: (A) Flinn diagram plotting L (\(\lambda_1\)), F (\(\lambda_2\)), and T (\(\lambda_3\)) orientations of stress axes. (B) Bulk susceptibility calculated using the GSG/Strain99 program.
the layer-parallel σ_1 orientations show significant variation between sites (Table 4). Due to the limited number of sample sites and the fact that sample sites could not be selected due to exposure to be paired across the thrust for calcite twinning analysis, a systematic correlation between footwall and hanging wall results could not be determined (Table 4). Therefore, our hypothesis testing is primarily based on the paleomagnetic and magnetic susceptibility data.

6. Discussion

Our combined results from the analyses of samples in the hanging wall and the footwall of the Jones Valley thrust sheet are used to determine the presence and amount, if any, of rotation on the thrust front. To augment our paleomagnetic data, we include prior results from Hodych et al. (1985), who sampled the northeastern portion of the Birmingham anticlinorium (northeast of site HW8; Fig. 1B). Included from Hodych et al. (1985) are three results from the footwall and seven results from the hanging wall, although five of these hanging wall sites are near site HW8. When comparing the tilt corrected directions (Fig. 8), no discernible difference in declination is seen between hanging wall rocks and footwall rocks. A comparison of the mean directions for the footwall ($D = 147.3^\circ$, $I = 21.4^\circ$, $a_{95} = 6.1^\circ$, $k = 97.96$) and hanging wall ($D = 151.4^\circ$, $I = 17.4^\circ$, $a_{95} = 3.0^\circ$, $k = 181.98$) also shows that lack of declination difference (Fig. 8). Perroud and Van der Voo (1984) obtained results from the entire thrust belt in Alabama and therefore offer an independent average direction for the Red Mountain Formation. Comparison of our directions with their result ($D = 150.0^\circ$, $I = 20.0^\circ$, $a_{95} = 3.5^\circ$, $k = 64$) also shows no statistical difference (Fig. 8). Thus, paleomagnetism of the Red Mountain Formation reveals no significant vertical-axis rotation of the hanging wall of the Jones Valley thrust sheet.

Layer-parallel magnetic fabrics provide a similar result for a test of vertical-axis rotations of the Jones Valley thrust sheet. The mean trend for the K_{max} for the footwall is approximately 37° and for the hanging wall 40°, both of which are approximately parallel to the thrust trace. The generally thrust-parallel trend of K_{max} and the lack of deviation between the footwall and hanging wall layer-parallel magnetic lineations support the conclusion that no relative rotation occurred after acquisition of the fabric. Strain and AMS ellipsoids are inherently difficult to compare for a variety of reasons (see Borradaile and Henry, 1997; Pares and van der Pluijm, 2002a; Evans et al., 2003). However, in the footwall, the greater intensity of the tectonic lineation is indicative of larger strains (Fig. 7a). In the hanging wall, many sites are dominated by a compaction fabric, but tectonic lineations appear to be better developed to the southwest, where we predict more strain within the thrust sheet on the basis of cross-section restoration.

Rotation of the Jones Valley thrust fault is not supported by paleomagnetism or magnetic fabrics. Rotation, therefore, cannot explain the displacement gradient despite the geometrically measured $15^\circ - 23^\circ$ apparent rotation of the thrust sheet. Therefore, instead of a rotating thrust sheet with a fixed hinge, we propose that the thrust developed by self-similar growth, with displacement perpendicular to the strike of the ramp and lateral growth of the fault coincident with increased displacement into the foreland (Fig. 9). The proposed scenario envisions growth of the thrust sheet with straight, parallel displacement vectors into the foreland, while the surface expression of the fault grows laterally in both directions. Our favored model assumes that some deformation must be accommodated within the thrust sheet to maintain continuity without tear faults, which may be accomplished by cataclastic flow within the thrust sheet (Wilkerson, 1992; Ismat and Mitra, 2005).

Our model also has implications for the thrust belt structure beneath the coastal plain cover. Displacement on the Jones Valley thrust sheet should continue to decrease southwest of cross-section 18. Therefore, to the southwest, we might expect a footwall splay to appear in a similar position as the Opossum Valley thrust fault in the northeast. This prediction would allow for further transfer of displacement from the Jones Valley thrust fault. New work to the southwest beneath the Coastal Plain cover would be useful to fully understand this relationship.

Several studies have documented displacement-length relationships on faults and determined a power-law relationship, $D_{max} = cL_{max}^{-n}$, where D_{max} is the maximum displacement, L_{max} is the maximum fault length and c and n are constants (e.g., Davis et al., 2005). The half-length/displacement

![Fig. 8](image-url)
relationships of thrust faults from Davis et al. (2005) and Hatcher (2004) were compiled and converted into apparent rotation vs. displacement to evaluate whether the Jones Valley thrust fault has a similar relationship between calculated rotation and half-length (Fig. 10). The range of apparent rotation angles (15°–23°) for the Jones Valley thrust fault is consistent with other thrust faults. Therefore, the proposed displacement gradient is comparable to other non-rotated thrust sheets.

7. Conclusion

Paleomagnetism of the Red Mountain Formation reveals a pre-folding magnetization, likely acquired in the Pennsylvanian, prior to motion on the Jones Valley thrust fault. The displacement gradient on the Jones Valley thrust fault has a similar relationship between calculated rotation and half-length (Fig. 10). The range of apparent rotation angles (15°–23°) for the Jones Valley thrust fault is consistent with other thrust faults. Therefore, the proposed displacement gradient is comparable to other non-rotated thrust sheets.

Acknowledgements

Appalachian research at the University of Michigan was supported by grants from the American Chemical Society-Petroleum Research Fund (most recently 45893-AC8), by the Scott Turner Fund and student grants from the Geological Society of America. We thank Franek Hasiuk and Ed Osborne for field support, Josep Parés for laboratory support and Rick Allmendinger for his Stereonet program. The authors also like to thank journal reviewers David Wiltschko and Emilio Pueyo for thorough and thoughtful reviews that significantly improved the manuscript.

References

