ABSTRACT
Calcite-twinning analysis of Paleozoic limestones from 42 sites reveals that the change in regional strike along the frontal edge of the Pennsylvania salient is accompanied by an equal-magnitude rotation of paleostress directions of up to 60 degrees. The rotations, recorded at 22 reliable sites, show no discernible difference between sites with rocks of Cambrian-Ordovician and Silurian-Devonian age. Evidence for similarly fanned orientations is not present in foreland sites. Scatter in the data is attributed to grain-scale rotations and compaction overprinting, as demonstrated in prior studies, and it was reduced by data-cleaning methods as well as by the use of contouring and data-averaging methods. Comparisons of paleostress directions within the belt reveal only minor rotations in the southwest region of the salient, and the bulk of rotation is accommodated by the northern limb. We hypothesize that these rotations resulted from convergence in the thrust wedge against a northerly bounding, rigid basement block around Pennsylvanian times.

INTRODUCTION
A feature of many, if not most, fold-and-thrust belts around the world is the presence of curved segments, with a degree of curvature that may range from tens of degrees to as much as 180°. Orogenic curvature had already been noted a century ago (Hobbs, 1914) and in the mid-1950s, Carey introduced the term “orocline” to describe this common geometry (Carey, 1955). Originally, orocline was used to describe a straight belt that later became curved (secondary curvature), but the term is used today to describe both originally curved segments (primary curvature) as well as secondary curvature of belts (Eldredge et al., 1985; Marshak, 1988; Hindle and Burkhard, 1999). Modern interpretations for curved belts range from primary curvature to progressive rotational displacements to secondary curvature, or combinations, based on kinematic, paleomagnetic, and modeling studies (e.g., Kollmeier et al., 2000; Weil et al., 2000; Spraggins and Dunne, 2002; Marshak, 2004; Sussman et al., 2004; Weil and Sussman, 2004).

The Pennsylvania salient, one of the more striking features of the Appalachian Mountain belt in map view, accommodates a change in orientation of structural features from a south-southwesterly direction in the central Appalachians to an easterly direction farther north near the New York–Pennsylvania border (Fig. 1). The evolution of the Pennsylvania salient remains a topic of active discussion (e.g., Wise, 2004), in large part due to seemingly conflicting kinematic and paleomagnetic data on the curvature of the belt. Paleomagnetic results indicate a prefolding rotation of 20–30° between inner segments of the salient limbs (Kent, 1988; Stamatakos and Hirt, 1994; Stamatakos et al., 1996). Kinematic data show a consistent, parallel early shortening direction that diverges clockwise in the northern salient limb and counterclockwise in the southern salient limb over time (Nickelsen, 1979; Geiser and Engelder, 1983; Gray and...
Mitra, 1993; Zhao and Jacobi, 1997; Younes and Engelder, 1999), and this differs with the pure-bending model typically associated with oroclinal evolution. These conflicting paleomagnetic and kinematic scenarios have prompted new hypotheses (Gray and Stamatakis, 1997; Wise, 2004) that also attempt to explain other characteristics of the belt, such as the observed lack of tangential shortening or extension that would be expected with bending. In this paper, an alternative approach to assessing regional kinematics is used to examine the proposed models and offer a new scenario for the formation of structures in a salient.

Calcite-twinning analysis provides an independent approach to test the various kinematic hypotheses because it preserves the earliest deformation of rocks along the belt, prior to regional folding. Calcite-twinning analysis shows typical prefolding, layer-parallel deformation patterns that have been recognized in other studies as sensitive indicators of early orogenic evolution (e.g., Engelder, 1979a, 1979b; Ferrill and Groshong, 1993a, 1993b; van der Pluijm et al., 1997; Harris and van der Pluijm, 1998). Deformation experiments on limestones have shown that the bulk orientation of calcite twinning in a sample is dependent on the orientation of the remote stress field (Groshong, 1974; Teufel, 1980; Groshong et al., 1984), which can be extracted from natural samples through data-inversion techniques (Spang, 1972; Evans and Groshong, 1994; Lacombe et al., 1990; Rocher et al., 2004). Twinning of calcite requires a low critical resolved shear stress of ~10 MPa (Jamison and Spang, 1976; Wenk et al., 1987) and is a strain-hardening process, meaning that further twinning is resisted as beds tilt during subsequent deformation. As a consequence, typical deformation conditions recorded by the analysis are those of the early stress field under horizontal compression, producing layer-parallel shortening fabrics (Jamison and Spang, 1976). This paper focuses on results from a detailed study of samples collected along the Pennsylvania salient, which is used to constrain the kinematics and relative timing of deformation events and curvature in the belt.

CALCITE-TWINNING ANALYSIS

The analysis of calcite deformation twins (Fig. 2) as an indicator of paleostress and paleostrain has yielded reliable results both in experimental (Groshong, 1974; Teufel, 1980; Groshong et al., 1984) and in field studies (e.g., Engelder, 1979a, 1979b; Ferrill and Groshong, 1993a, 1993b; van der Pluijm et al., 1997; Kollmeier et al., 2000). Paleostress directions are extracted from a twinned calcite sample by optical determination of the host grain’s c-axis and the pole to the e-twin plane within the host (Turner, 1953). This information, along with fixed angular relations between the e-twin pole and grain’s c-axis, yields the most favorable orientation of a compression and extension axis for each twinned grain (Fig. 3). An aggregate of twinned grains is subsequently analyzed for a dominant (or average) compression direction (Spang, 1972). The analysis can involve routines that invert for the stress tensor (Evans and Groshong, 1994; Lacombe and Laurent, 1996; Rocher et al., 2004) or contouring of individual axes in an aggregate, both of which result in paleostress directions that record aspects of the regional stress field. In this study, site directions are analyzed in a geographic and a stratigraphic framework in order to unravel the syn- and post-twinning deformation history of the host rocks. Since deformation of calcite twinning is a strain-hardening process (Teufel, 1980), it typically records early horizontal compression (see also, Chinn and Konig, 1973; Engelder, 1979b; Craddock and van der Pluijm, 1989). Similar to other techniques, such as paleomagnetism, this approach can give insight into tectonic rotations and their relative timing and direction(s) of compression. If multiple, discrete deformation events occurred, they may be recorded as superimposed populations when the deformations are oriented at moderate to high angles to one another (Friedman and Stearns, 1971; Teufel, 1980). In these cases, the events can be extracted by discriminating between twins of a dominant compression direction (expected values, or EVs) and twins of a subordinate compression direction (residual values, or RVs), which are determined on the basis of the feasibility of producing the observed twin with a candidate compression direction. Description of the analysis data-cleaning method can be found in Groshong (1972) and Evans and Groshong (1994), and the procedures used in this study follow our application of calcite-twinning analysis to curvature in the Cantabrian Mountains of northern Spain (Kollmeier et al., 2000).

Oriented samples were collected with a portable, gas-powered diamond coring drill from coarse-grained limestones of the Cambrian-Ordovician Beekmantown Group and Silurian-Devonian Keyser, Helderberg, and Tonoloway Formations. Beside the common occurrence of these units, this stratigraphic sampling strategy was designed to test the Gray and Stamatakis (1997) model, which invokes a hidden detachment between these units. Thin sections from oriented samples were optically analyzed on a universal-stage microscope to determine the crystallographic orientations of twin sets and their host calcite grains (Fig. 3). To ensure optimal measurement of the stress field, we confirmed that samples were not biased by containing crystallographically similar oriented grains. In addition, we only measured twin sets that were straight and continuous within grains. Using the dynamic analysis of Turner (1953), we determined the compression axes given by the orientation of a grain’s c-axis and the twin plane, and derived the strain for each sample using the technique of Groshong (1972) and Groshong et al. (1984) for data cleaning. Whereas we did not use strain quantities for our twinning analysis, the orientation of strain axes was used to discriminate between expected values (EVs) and residual values (RVs), as used by Kollmeier et al. (2000), and to identify superimposed deformation phases, if any. Using the resultant spatial stress distribution, we evaluated whether
compression was layer-parallel and compared individual site data to geometric models of formation of curved orogenic fronts.

RESULTS

Calcite-twinning analyses of 23 Cambrian-Ordovician and 17 Silurian-Devonian sites along the frontal edge of the salient (Fig. 1; Table 1) were quality-evaluated and reduced to provide reliable paleostress directions for 13 Cambrian-Ordovician and 15 Silurian-Devonian sites. Reliable paleostress directions were also obtained for two sites of Mississippian age in the foreland. Cambrian-Ordovician sites exhibit a dominant population (EVs) of compression directions that are generally orthogonal to regional strike and a residual population (RVs) of subvertical compression directions. Silurian-Devonian sites similarly exhibit a dominant population (EVs) of compression directions orthogonal to regional strike, but also record a small residual population (RVs) of compression directions that are subparallel to strike. We examine in detail only the primary orthogonal signal in both sets of sites, because separation of the residual populations yielded insufficient data for a rigorous analysis of superimposed deformation, but we will comment on the likely significance of other populations.

Within the dominant population, most compression axes lie roughly within or near the bedding plane (Fig. 4), which confirms that twinning records a preflexing, layer-parallel shortening fabric. Where tested, directions from oppositely dipping limbs give coherent directions after bedding correction (i.e., positive fold test). Small deviations from parallelism between compression directions with unfolded bedding are expected due to grain-scale rotations during progressive folding. An amount of deviation from bedding in folded carbonates up to several tens of degrees has been previously documented in calcite-twinning analysis of similar rocks from the Hudson Valley fold-and-thrust belt of the Appalachian orogen by Harris and van der Pluijm (1998) and in paleomagnetic studies in the Pennsylvania salient by Stamatakis and Hirt (1994). Whereas the data from sites along the salient show significant scatter, they follow a systematic change in orientation of paleostress directions that matches the change in regional strike when examined in map view (Fig. 5). We also note that no distinction in the relationship is recognizable between Cambrian-Ordovician and Silurian-Devonian rocks, indicating that these units behaved as a structurally coherent package.

We plotted paleostress directions and paleomagnetic declinations (Table 2) as a function of position along the curvature of the salient in order to quantify the rotations (Fig. 6). Distance along the front is measured from the southwest in a series of linear segments that approximate the along-front distribution of sampling sites. Sites that did not fall along the frontal trend of the salient, such as CO-23 and all paleomagnetic sites, were relocated by projection perpendicular to regional strike. The absence of a difference between Cambrian-Ordovician and Silurian-Devonian samples is clear in this data representation (Fig. 6A). While there is considerable scatter, the rotational pattern is already evident in the raw data. Statistical testing of the data shows that the relationship is significant at the 0.001 level, with a standard error of the slope of 0.049 and a t-value of 4.3. A moving-average analysis of these data using a conservative interval of $n = 3$ (Fig. 7) reduces the inherent scatter of the data, which visually highlights the trend in the raw data set. These moving intervals correspond to 10–40 km segments along the thrust front and yield a data set that we can compare to representative measurements of regional strike taken every 25 km along the thrust front. Note that regional strike representations show proportional but lesser scatter than the raw calcite data (Fig. 6B) and a similar scatter to the moving-averaged calcite data (Fig. 7). There is an excellent match between the slopes of linear best fits to field strike and calcite compression data. By multiplying the best-fit slope of regional strike measurements against the 300 km of sampled frontal distance, we obtain a measure of the full curvature of the salient of ~60 degrees. Best fits to the raw and the moving-averaged data show an equal rotation of paleostress directions of 60–65 degrees along the thrust front, which is statistically identical to the strike rotation. To obtain the orientation in foreland rocks that were not folded, we add analysis of two new sites within the foreland that complement previously published data (Engelder, 1979a, 1979b). These foreland data do not show comparable rotation of compression directions, confirming the systematic regional orientation in foreland.
<table>
<thead>
<tr>
<th>Site</th>
<th>Lat. ('N)</th>
<th>Long. ('W)</th>
<th>BC distance (km)</th>
<th>Strike sample</th>
<th>Dip</th>
<th>N</th>
<th>Std. err.</th>
<th>% RV</th>
<th>N</th>
<th>RV</th>
<th>Absolute coordinates</th>
<th>Tilt-corrected Strike</th>
<th>S–S0</th>
<th>D–D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO7</td>
<td>40.6134</td>
<td>78.1811</td>
<td>113.6662</td>
<td>43 33 E 22</td>
<td>0.803</td>
<td>4.7</td>
<td>0</td>
<td>0</td>
<td>112.17</td>
<td>(37,21)/0.31</td>
<td>147.54</td>
<td>129.42</td>
<td>129.42</td>
<td></td>
</tr>
<tr>
<td>CO9</td>
<td>40.6448</td>
<td>78.2331</td>
<td>113.5534</td>
<td>54 68 E 24</td>
<td>4.55</td>
<td>2.1</td>
<td>13</td>
<td>3</td>
<td>112.17</td>
<td>(144,39)/–4.87</td>
<td>147.54</td>
<td>129.42</td>
<td>129.42</td>
<td></td>
</tr>
<tr>
<td>CO10</td>
<td>40.7985</td>
<td>77.8234</td>
<td>162.1661</td>
<td>26 17 E 20</td>
<td>0.533</td>
<td>2.2</td>
<td>0</td>
<td>0</td>
<td>112.17</td>
<td>(188,44)/0.11</td>
<td>147.54</td>
<td>129.42</td>
<td>129.42</td>
<td></td>
</tr>
<tr>
<td>CO11</td>
<td>40.8668</td>
<td>77.8664</td>
<td>159.2826</td>
<td>60 36 W 21</td>
<td>0.333</td>
<td>1.5</td>
<td>5</td>
<td>1</td>
<td>112.17</td>
<td>(188,44)/0.11</td>
<td>147.54</td>
<td>129.42</td>
<td>129.42</td>
<td></td>
</tr>
<tr>
<td>CO12</td>
<td>40.9428</td>
<td>77.6391</td>
<td>187.3971</td>
<td>54 36 E 26</td>
<td>0.674</td>
<td>5.6</td>
<td>4</td>
<td>1</td>
<td>112.17</td>
<td>(188,44)/0.11</td>
<td>147.54</td>
<td>129.42</td>
<td>129.42</td>
<td></td>
</tr>
<tr>
<td>CO18</td>
<td>40.0118</td>
<td>77.3795</td>
<td>213.3385</td>
<td>84 18 S 20</td>
<td>0.189</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>112.17</td>
<td>(188,44)/0.11</td>
<td>147.54</td>
<td>129.42</td>
<td>129.42</td>
<td></td>
</tr>
<tr>
<td>CO23</td>
<td>40.1356</td>
<td>77.7671</td>
<td>113.5534</td>
<td>34 55 E 25</td>
<td>1.127</td>
<td>6.0</td>
<td>0</td>
<td>0</td>
<td>112.17</td>
<td>(188,44)/0.11</td>
<td>147.54</td>
<td>129.42</td>
<td>129.42</td>
<td></td>
</tr>
<tr>
<td>SD1</td>
<td>39.8987</td>
<td>78.6061</td>
<td>29.7415</td>
<td>54 30 E 23</td>
<td>0.383</td>
<td>2.1</td>
<td>0</td>
<td>0</td>
<td>112.17</td>
<td>(188,44)/0.11</td>
<td>147.54</td>
<td>129.42</td>
<td>129.42</td>
<td></td>
</tr>
<tr>
<td>SD11</td>
<td>40.6147</td>
<td>78.3087</td>
<td>106.5545</td>
<td>40 22 W 20</td>
<td>0.092</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>112.17</td>
<td>(188,44)/0.11</td>
<td>147.54</td>
<td>129.42</td>
<td>129.42</td>
<td></td>
</tr>
<tr>
<td>SD12</td>
<td>40.1669</td>
<td>78.2539</td>
<td>45.6505</td>
<td>28 82 W 22</td>
<td>0.683</td>
<td>8.3</td>
<td>5</td>
<td>1</td>
<td>112.17</td>
<td>(188,44)/0.11</td>
<td>147.54</td>
<td>129.42</td>
<td>129.42</td>
<td></td>
</tr>
<tr>
<td>SD17</td>
<td>40.5088</td>
<td>78.0378</td>
<td>11.5469</td>
<td>121 10 S 19</td>
<td>0.423</td>
<td>1.7</td>
<td>0</td>
<td>0</td>
<td>112.17</td>
<td>(188,44)/0.11</td>
<td>147.54</td>
<td>129.42</td>
<td>129.42</td>
<td></td>
</tr>
<tr>
<td>SD18</td>
<td>40.0173</td>
<td>78.7017</td>
<td>28.0050</td>
<td>114 17 S 30</td>
<td>0.726</td>
<td>16.7</td>
<td>15</td>
<td>7</td>
<td>112.17</td>
<td>(188,44)/0.11</td>
<td>147.54</td>
<td>129.42</td>
<td>129.42</td>
<td></td>
</tr>
</tbody>
</table>

Note: Coordinate data are (direction, plunge)/magnitude; BC is reference distance; S–S0 and D–D0 are difference with reference values.
DISCUSSION

One dominant and two minor populations of compressional directions can be observed from calcite-twinning analysis in the region: a dominant set of directions roughly orthogonal to regional strike that is found in both Cambrian-Ordovician and Silurian-Devonian sites, a small residual set of subvertical directions in Cambrian-Ordovician sites, and a small residual set of strike-parallel directions restricted to Silurian-Devonian sites.

The dominant population of compressional directions varies systematically in orientation that is roughly orthogonal to regional strike. No distinction was found between Lower and Middle/Upper Paleozoic units, and so we reject a previous hypothesis that requires mechanical decoupling between these sequences (e.g., Gray and Stamatakos, 1997). This model also predicted distinct behavior of the magnetization directions, which we tested in a separate paleomagnetic study of Lower Paleozoic units. Results from this study show that magnetization behavior is the same for Lower and Middle/Upper Paleozoic units (Cederquist et al., 2006), which offers additional opposition for their hypothesis. As shown in Figure 7, the indistinguishable trends of compression directions and regional strike, which are distinct from trends in the foreland, show that primary oroclinal bending is responsible for the 60° arcuation of the Pennsylvania salient. The scatter in our data is partly inherent in the structure, as shown by the comparable scatter in regional strike, and is influenced by grain-scale rotations in deformed carbonates that have been documented previously (Harris and van der Pluijm, 1998).

The two minor populations of calcite-twinning data are not sufficiently large to offer conclusive interpretations, but we briefly speculate on their meaning as working hypotheses for our ongoing studies elsewhere along the Appalachian front. The small subvertical population that is evident only in Cambrian-Ordovician rocks is attributed to vertical stresses due to overburden during burial and compaction. The load would otherwise not have been sufficiently large to produce twinning in overlying Silurian-Devonian rocks of the stratigraphic sequence. The minor strike-subparallel population, which is occasionally evident in Silurian-Devonian rocks, may reflect local transpressional stresses. Most importantly, the lack of a widespread residual population indicates the absence of a pervasive secondary compression regime significantly different.

Figure 4. Equal-area lower-hemisphere plots of sample results used in this study. Contoured compressive stress axes (small solid circles) are shown as well as the principal stress and strain axes computed using the Strain99 program after the method of Groshong (1972). All data are represented in present-day field coordinates with bedding included. Other symbols: open square—\(\sigma_3\), open triangle—\(\sigma_2\), open circle—\(\sigma_1\); filled square—\(e_3\), filled triangle—\(e_2\), filled circle—\(e_1\); EV—expected value.
in orientation from the first. This contrasts, for example, with observations from calcite-twinning analysis in the Cantabrian orocline, where two stress fields could be recognized (Kollmeier et al., 2000).

Timing of Deformation Events

Because compression directions derived from calcite-twinning analysis predate folding and thrusting in the region, they are the earliest indicator of compression and, therefore, early orogenic evolution and tectonic docking. The evidence for the transfer of twinning stresses into weakly deformed continental interior cover rocks (Cradock et al., 1993; van der Pluijm et al., 1997) places additional constraints on the results from this study. The onset of deformation is dated as post–middle Carboniferous in age, because rocks of this age exhibit layer-parallel twinning deformation. Evidence for postrotation, synfolding magnetizations during the Early Permian (Stamatakos et al., 1996; Cederoquist et al., 2006) therefore brackets the timing of orogenic bending between Pennsylvanian and Early Permian times (i.e., Alleghanian); i.e., a Pennsylvanian age for oroclinal rotation.

Our study recognizes early compression followed by rotation that is not preserved in...
other deformation features, with the exception of primary paleomagnetic signals (Kent and Opdyke, 1985; Miller and Kent, 1986a, 1986b; Kent, 1988; Stamatakos and Hirt, 1994). These paleomagnetic data (Table 2) display a similar trend of rotation to the calcite-twinning data (Fig. 6B), but the total magnitude of rotation appears to be less than that documented in our study, which remains to be explained. Regardless, the paleomagnetic data document a similar systematic change in direction commensurate with a change in strike that falls within the range from calcite data.

Regional Kinematic Scenario

We attempt to integrate all available data into a spatio-temporal evolutionary model for this curved portion of the Appalachian belt (Fig. 8), which will also serve as a testable hypothesis for work elsewhere along the orogenic front and perhaps a tectonic signature for other curved orogens (e.g., the Rocky Mountains). Upon collision at the Laurentian margin, calcite in units as young as mid-Carboniferous became twinned in a dominantly uniform stress field that is today preserved in foreland carbonates. Strain-hardening locked the initial stress directions as passive markers in carbonate strata. Next, vertical-axis rotations up to ~60° reoriented these paleostress directions in calcite, providing the bulk of angular rotation that is evident in the present day. This rotation produced a crustal heterogeneity that affected subsequent deformation in the area. When folding occurred during the Early Permian, regional folds with curved axial surfaces formed in their present configuration, following the structural anisotropy imposed by the earlier rotation. In this scenario, the early deformation, characterized by thrusting and rotation, was temporally separate from later folding of the cover sequence.

The formation of folds with curved trends explains the absence of tangential compression or extension along the belt, as described by Wise (2004). The scenario also explains the absence of evidence for rotation in remagnetized rocks (e.g., Gray and Stamatakos, 1997; Cederquist et al., 2006). During folding in the Early Permian, secondary magnetization progressed from the hinterland to the foreland and produced a postfolding magnetization in hinterland folds, a prefracture magnetization in the rotated foreland, and a synfolding pattern in between (Gray and Stamatakos, 1997; Cederquist et al., 2006).

![Figure 6. (A) Calcite stress directions as a function of distance along the thrust front. Cambrian-Ordovician sites and Silurian-Devonian sites are distinguished by different symbols and show no difference in trend. The trend line shown is a simple fit to the combined data set. Standard error of the slope is 0.049 and t-value is 4.3, indicating significance of the data set at the 0.001 level (see text for details). (B) As in A but including measurements of representative strike and paleomagnetic declinations (Table 2) for comparison. The trend line through baseline strike is shown and indistinguishable from the trend line of raw data.](image)

![Figure 7. Moving window analysis of combined calcite paleostress directions, using averages of n = 3 (triangles) as a function of distance along thrust front. Representative strike along the thrust front is plotted schematically with a y-axis shift of 99° for comparison (squares). Best-fit lines for both data are shown and fully overlap. The arbitrary value of 99° is used solely because it causes the y-intercepts to coincide and allows for a better visual comparison of the slope.](image)
Since this fold-related pattern and remagnetization postdate rotation in our scenario, past interpretations that have required more complicated deformation histories to explain the observations are significantly simplified.

Finally, the orientation of calcite-twinning patterns in foreland sites from this study and others (Engelder, 1979a, 1979b; Craddock et al., 1993) can be interpreted to indicate oblique convergence at the Laurentian margin, resulting in left-lateral transpression in the southern segment of the Appalachian salient and dextral transpression in the northern segment of the salient in Pennsylvania times. Comparison of compression directions from within the orocline to those in the foreland yields a close match with the southern limb of the salient, which we interpret as pinning of the southern region while the northern segment of the salient accommodated most of the rotation. Rotation of the northern segment is also in agreement with paleomagnetically determined rotations in the area (Van der Voo, 1993, p. 79).

Whereas our kinematic data cannot preclude a role for lateral variations in wedge thickness in the rotations (Macedo and Marshak, 1999), we mostly attribute the pattern of rotation to the presence of Precambrian rocks, the Adirondacks and Reading Prong (see Thomas, 2006, for a recent description of the plate-margin geometry), which acted as a barrier to oblique convergence and created the present-day Pennsylvania salient by rotation of its northern limb.

CONCLUSIONS

Calcite-twinning analysis provides an independent data set that can be used to examine the origin of curvature in the Pennsylvania salient. We find rotation of paleostress directions up to 60° within the salient, compared to a dominantly uniform stress field that is preserved in the neighboring foreland and other mid-continent sites. Penetrative calcite twinning in the orogen and foreland occurred prior to Early Permian folding. Rotation of the belt was associated with Pennsylvania thrusting, but this event was temporally separated from younger folding. This temporal sequence may reflect regional folding after the thrust wedge was locked in the Early Permian. Folding is associated with widespread remagnetization, while fold axial traces track the curved crustal grain (i.e., a mechanical anisotropy) from earlier thrusting. This scenario may also be applicable to curved orogenic fronts elsewhere, such as the Wyoming salient in the U.S. Rocky Mountains (e.g., Eldredge et al., 1985; Craddock et al., 1988; Paulsen and Marshak, 1997), where it is important to characterize the presence of pre-existing basement heterogeneities.

Thus, strictly speaking, rotation in the Pennsylvania salient is of secondary origin, but it preceded regional folds with curved trajectories that were otherwise unrotated. Fold curvature, therefore, is primary in origin. Because convergence directions in the orogen best match those of the southern limb of the salient, we suggest that most of the rotation was accommodated in the northern limb, as has also been suggested by paleomagnetic studies. We propose that a Precambrian basement block of the Adirondacks and Reading Prong acted as a buttress that caused early rotation.

REFERENCES CITED
