Late Miocene to Pleistocene paleoceanographic records from the Feni and Gardar Drifts: Pliocene reduction in abyssal flow

N.J.C. Hassold a,*, D.K. Rea a, B.A. van der Pluijm a, J.M. Parés a, J.D. Gleason a, A.C. Ravelob

a Department of Geological Sciences, University of Michigan, Ann Arbor, MI, USA
b Ocean Sciences Program, University of California, Santa Cruz, Santa Cruz, CA, USA

Received 28 January 2004; received in revised form 2 August 2005; accepted 2 November 2005

Abstract

Magnetic fabric analyses from two North Atlantic drift deposits provide proxies for determining relative variations in the strength of abyssal flow over the last 10 my. The data show a cessation of current-controlled sedimentation at the shallower Feni Drift (2417 m) at the time of onset of Northern Hemisphere glaciation (2.6 Ma). Drift formation ended nearly 2 my earlier (4.2 Ma) at the deeper Gardar Drift (3220 m), implying stepwise reduction in deep-water flow. Relatively light $\delta^{18}O$ values at the deeper Garar Drift indicate a warmer, thus also more salty, water mass site prior to 6 Ma. We interpret this as representing Mediterranean Sea water, which flowed north at depths greater than that of the Feni Drift Site. The supply of Mediterranean Water to the North Atlantic was shut off as the Gibraltar Straits closed, causing the Messinian salinity crisis, and never returned to that position in the water column after the Mediterranean opened again.

© 2005 Elsevier B.V. All rights reserved.

Keywords: DSDP Sites 610 and 611; North Atlantic; Drift deposits; Magnetic fabric; Paleoceanography

1. Introduction

Global climate is greatly influenced by ocean circulation, especially the formation of cold, deep water at high latitudes and the concomitant movement of warm surface water away from the equator; this has been called the ocean "conveyor" (Broecker, 1991; Wold, 1994; Jansen and Raymo, 1996; Hansen et al., 2004). In the North Atlantic, the Gulf Stream brings warm, saline water to the Norwegian–Greenland Sea, where these waters cool and sink, forming the North Atlantic Deep Water (NADW) (Howe et al., 1994; Wold, 1994). Over geologic time, the deepening of the Icelandic gateways has controlled this formation of NADW, specifically the subsidence of the Greenland–Iceland–Scotland Ridge (Jansen and Raymo, 1996; Wright and Miller, 1996). Here, waters flowing south from the Norwegian Sea divide: one branch flows over the Iceland–Faeroe Ridge and enters the Iceland Basin; the other branch flows over the Wyville-Thompson Ridge, enters the Rockall Trough, flows around the Rockall-Hatton Bank and then into the Iceland Basin (Fig. 1). In the Iceland Basin, this water mixes with water from the flow over the Iceland–Faeroe Ridge, flows along the Reykjanes Ridge through the Charlie-Gibbs Fracture Zone and into the western North Atlantic (Fig. 1).
These flows move along the seafloor where they entrain and transport sediment, commonly depositing them parallel to the deep-sea topography when the current velocity decreases, forming drift deposits. Drift deposits are hundreds of kilometers in length, relatively narrow, may have wave-like bed forms and are associated with strong deep-sea currents (Wold, 1994; ODP, Shipboard Scientific Party, 1998).

Drift deposits contain physical and sedimentological records of their depositional history. Using anisotropy of magnetic susceptibility (AMS) and particle size analysis, Ellwood and Ledbetter (1977, 1979) and Ellwood et al. (1979) studied past current flow velocities in the Vema Channel. In general, they determined a direct relationship between the magnetic fabric strength, AMS, grain size and current velocity; stronger fabric and coarser grain size were indicative of higher current velocity.

Joseph et al. (1998) combined the use of magnetic fabric analysis and grain size distribution to estimate depositional energy fields for samples from the Blake Outer Ridge and the Bermuda Rise sediment drifts and the Delgada Deep Sea Fan offshore from northern California. They found that the combination of magnetic fabric and grain-size distribution define specific sediment depositional fields—eolian, hemipelagic mud, drift deposits and turbidites. The magnetic fabric strength is a measure of grain alignment; in samples where the sediment grains are randomly oriented, there is no fabric. Abyssal flow aligns the grains; the strength of the current influences the median grain size and the grain-size distribution in addition to the strength of the magnetic fabric (Rea and Hovan, 1995; Joseph et al., 1998). These methods have successfully been applied to studies of drift deposits on the Kerguelen Plateau in the southern Indian Ocean (Joseph et al., 2002) and the Campbell Plateau, east of New Zealand (Joseph et al., 2004).

Here we present a reconnaissance study of drift deposits in the North Atlantic that spans late Miocene to Pleistocene time, a period that encompasses much of the late Cenozoic global cooling. In addition to sediment composition, mass accumulation rate and stable isotopic signatures of benthic foraminifera, we determined the magnetic fabric of the bulk sediment. The radiogenic isotope geochemistry of terrigenous grains extracted from a few samples provides an indication of their provenance. These data were obtained with the goal of examining the general history of late Cenozoic abyssal flow in the North Atlantic.

Fig. 1. Location of DSDP Leg 94 Sites 610 (Feni Drift, 2417 m depth) and 611 (Gardar Drift, 3220 m depth) (after Kidd and Hill, 1987). Depths shown in meters.
1.1. Geologic setting and samples

Sites occupied during Leg 94 of the Deep Sea Drilling Project (DSDP) were usually located on drift deposits (Fig. 1). The Feni Drift lies where Norwegian Sea Overflow Water (NSOW) flows over the Wyville-Thompson Ridge and down through the Rockall Trough. The Gardar Drift is a large (1000 km long) drift deposit located along the lower eastern flank of the Reykjanes Ridge, where water from the Iceland Basin flows south toward the Charlie-Gibbs Fracture Zone and on into the western Atlantic Basin. Both drifts have large-scale wave-like bedforms, but Hailwood et al. (1987) and Kidd and Hill (1987) found no consistent link between these wave fields and present bottom water flow. They concluded that the sediment waves are relict features that migrated during the late Pliocene, due to a more vigorous NSOW, but that the migration ceased at the Plio/Pleistocene boundary and ensuing pelagic sediments drape the sediment waves.

For this reconnaissance investigation of the North Atlantic drifts, 38 separate sample pairs (adjacent sediment scoop samples and paleomagnetic cube samples), 17 from the Feni Drift and 21 from the Gardar Drift, were obtained from cores recovered at DSDP Sites 610 and 611. Site 610 was drilled on the southern end of the Feni Drift (53°8.13.5’N, 18°8.53.7’W, 2417 m water depth) and recovered nannofossil ooze and chalk. Accumulation of sediments at the Feni Drift is believed to have started around the time of the Eocene–Oligocene boundary (Kidd and Hill, 1987; Jansen and Raymo, 1996); the oldest sediment recovered at Site 610 was late early Miocene in age (Ruddiman et al., 1987a; Howe et al., 1994; Wold, 1994). Site 611 was drilled in the trough of a sediment wave at the southern end of the Gardar Drift (52°50.5’N, 30°18.6’W, 3220 m water depth) and recovered marly nannofossil chalk. Accumulation of sediments at the Feni Drift is believed to have started around the time of the Eocene–Oligocene boundary (Kidd and Hill, 1987; Jansen and Raymo, 1996); the oldest sediment recovered at Site 610 was late early Miocene in age (Ruddiman et al., 1987a; Howe et al., 1994; Wold, 1994). Site 611 was drilled in the trough of a sediment wave at the southern end of the Gardar Drift (52°50.5’N, 30°18.6’W, 3220 m water depth) and recovered marly nannofossil chalk. Accumulation of sediments at the Gardar Drift began in the middle to early–late Miocene; the oldest sediments recovered at this site are late Miocene in age (Ruddiman et al., 1987b; Wold, 1994; Jansen and Raymo, 1996). For this study, we sampled cores from Holes 610, 610A and 611C.

2. Methods

2.1. Age and age models

Ages were determined by magnetic reversal stratigraphy for all of the sediments from Hole 611C and for sediments younger than 8 Ma for Hole 610 using the 1995 Cande and Kent timescale (Cande and Kent, 1995). Approximate biostratigraphic ages for the four oldest samples from Hole 610 were determined using the nannofossil zones as given by Takayama and Sato (1987) and referring to the Berggren et al. (1995) timescale (Fig. 2). Fluxes were calculated using the linear sedimentation rate (LSR) as shown on Fig. 2 and the dry bulk density (DBD) data for each site taken from the Leg 94 Initial Reports (Ruddiman et al., 1987a; Ruddiman et al., 1987b). Mass accumulation rates (MAR) of the sediment components were calculated using the % terrigenous component or % CaCO₃ and the flux (MAR component = LSR × DBD × % component). These data are summarized in Tables 1 and 2.

2.2. Carbonate fraction determination

Carbonate concentrations of the bulk sample were determined by measuring the volume of CO₂ released when each sample was treated with 3 N HCl—the carbonate bomb method—as described by Müller and Gastner (1971). The resulting percentages are accurate to ± 1 wt.% (Tables 1 and 2).

2.3. Terrigenous fraction determination

Sediment samples were freeze-dried and the terrigenous component was isolated using the chemical extraction method described by Rea and Janecek (1981) as modified by Hovan (1995), which removes carbonates, oxides and hydroxides and biogenic silica. Weight percent terrigenous component data are accurate to ± 2% to 3% of the values (Tables 1 and 2).

Fig. 2. Age models and linear sedimentation rates for Sites 610 and 611. Ages for sediments from Hole 611C and sediments younger than 8 Ma for Hole 610 were determined using the 1995 Cande and Kent timescale (Cande and Kent, 1995). Approximate biostratigraphic ages for the four oldest samples from Hole 610 were determined using the nannofossil zones as given by Takayama and Sato (1987) and referring to the Berggren et al. (1995) timescale.
<table>
<thead>
<tr>
<th>Sample # hole-core section</th>
<th>Depth (mbsf)</th>
<th>Age (Ma)</th>
<th>Granisize (Φ50)</th>
<th>Granisize (μm)</th>
<th>% CaCO3</th>
<th>% terrigenous component</th>
<th>MAR (g/cm²/ky)</th>
<th>CaCO3 MAR (g/cm²/ky)</th>
<th>Terrigenous MAR (g/cm²/ky)</th>
<th>P°</th>
<th>T</th>
<th>Bulk susc. (×10⁻⁶ SI)</th>
<th>δ¹³C (%)</th>
<th>δ¹⁸C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>610A-1-3</td>
<td>4.16</td>
<td>0.087</td>
<td>6.4</td>
<td>11.84</td>
<td>43.4</td>
<td>33.1</td>
<td>5.19</td>
<td>2.25</td>
<td>1.72</td>
<td>1.015</td>
<td>0.139</td>
<td>277</td>
<td>0.91</td>
<td>3.83</td>
</tr>
<tr>
<td>610A-3-2</td>
<td>20.47</td>
<td>0.426</td>
<td>7.14</td>
<td>7.09</td>
<td>74.5</td>
<td>10.4</td>
<td>5.19</td>
<td>3.87</td>
<td>0.54</td>
<td>1.024</td>
<td>0.048</td>
<td>134</td>
<td>0.50</td>
<td>3.83</td>
</tr>
<tr>
<td>610A-5-3</td>
<td>41.5</td>
<td>0.865</td>
<td>6.38</td>
<td>12.01</td>
<td>28.6</td>
<td>46.4</td>
<td>5.19</td>
<td>1.49</td>
<td>2.41</td>
<td>0.037</td>
<td>0.668</td>
<td>608</td>
<td>1.02</td>
<td>2.78</td>
</tr>
<tr>
<td>610A-7-3</td>
<td>61.3</td>
<td>1.277</td>
<td>6.44</td>
<td>11.52</td>
<td>61.3</td>
<td>18.2</td>
<td>5.19</td>
<td>3.19</td>
<td>0.94</td>
<td>1.021</td>
<td>0.126</td>
<td>208</td>
<td>1.02</td>
<td>2.78</td>
</tr>
<tr>
<td>610A-9-3</td>
<td>80.04</td>
<td>1.668</td>
<td>6.33</td>
<td>12.43</td>
<td>78.1</td>
<td>8.4</td>
<td>5.19</td>
<td>4.06</td>
<td>0.43</td>
<td>1.034</td>
<td>−0.048</td>
<td>99</td>
<td>1.17</td>
<td>2.99</td>
</tr>
<tr>
<td>610A-11-3</td>
<td>98.78</td>
<td>2.058</td>
<td>5.62</td>
<td>20.33</td>
<td>80.2</td>
<td>6.3</td>
<td>5.19</td>
<td>4.17</td>
<td>0.33</td>
<td>1.046</td>
<td>−0.149</td>
<td>66</td>
<td>0.23</td>
<td>2.57</td>
</tr>
<tr>
<td>610A-13-3</td>
<td>118.44</td>
<td>2.468</td>
<td>6.71</td>
<td>9.55</td>
<td>76.8</td>
<td>8.5</td>
<td>5.19</td>
<td>3.99</td>
<td>0.44</td>
<td>1.021</td>
<td>−0.029</td>
<td>152</td>
<td>2.35</td>
<td>2.57</td>
</tr>
<tr>
<td>610A-15-3</td>
<td>137.64</td>
<td>2.868</td>
<td>6.35</td>
<td>12.26</td>
<td>82.2</td>
<td>7.5</td>
<td>5.19</td>
<td>4.27</td>
<td>0.39</td>
<td>1.332</td>
<td>−0.206</td>
<td>10</td>
<td>0.41</td>
<td>2.32</td>
</tr>
<tr>
<td>610A-17-3</td>
<td>156.1</td>
<td>3.198</td>
<td>6.23</td>
<td>13.32</td>
<td>93.3</td>
<td>2.5</td>
<td>2.63</td>
<td>2.45</td>
<td>0.07</td>
<td>1.448</td>
<td>0.392</td>
<td>−8</td>
<td>0.41</td>
<td>2.32</td>
</tr>
<tr>
<td>610A-19-3</td>
<td>175.86</td>
<td>3.995</td>
<td>5.94</td>
<td>16.29</td>
<td>93.1</td>
<td>2.5</td>
<td>2.63</td>
<td>2.45</td>
<td>0.07</td>
<td>1.275</td>
<td>0.384</td>
<td>−12</td>
<td>1.08</td>
<td>2.43</td>
</tr>
<tr>
<td>610A-21-3</td>
<td>194.58</td>
<td>4.750</td>
<td>6.91</td>
<td>8.32</td>
<td>92.8</td>
<td>2.5</td>
<td>2.63</td>
<td>2.44</td>
<td>0.09</td>
<td>1.258</td>
<td>0.372</td>
<td>−13</td>
<td>0.74</td>
<td>2.19</td>
</tr>
<tr>
<td>610-10-3</td>
<td>237.22</td>
<td>5.839</td>
<td>6.08</td>
<td>14.78</td>
<td>97.1</td>
<td>3.0</td>
<td>4.04</td>
<td>3.92</td>
<td>0.12</td>
<td>1.257</td>
<td>0.435</td>
<td>−13</td>
<td>0.83</td>
<td>2.19</td>
</tr>
<tr>
<td>610-11-2</td>
<td>302.16</td>
<td>7.544</td>
<td>5.3</td>
<td>25.38</td>
<td>95.3</td>
<td>2.3</td>
<td>4.04</td>
<td>3.85</td>
<td>0.09</td>
<td>1.296</td>
<td>0.344</td>
<td>−11</td>
<td>0.97</td>
<td>2.14</td>
</tr>
<tr>
<td>610-13-1</td>
<td>359.06</td>
<td>9.037</td>
<td>6.33</td>
<td>12.43</td>
<td>89.9</td>
<td>3.4</td>
<td>4.19</td>
<td>3.76</td>
<td>0.14</td>
<td>2.175</td>
<td>0.486</td>
<td>−4</td>
<td>0.97</td>
<td>2.13</td>
</tr>
<tr>
<td>610-14-2</td>
<td>408.32</td>
<td>10.330</td>
<td>5.71</td>
<td>19.10</td>
<td>94.5</td>
<td>13.7</td>
<td>4.19</td>
<td>3.96</td>
<td>0.57</td>
<td>1.355</td>
<td>0.311</td>
<td>−9</td>
<td>1.24</td>
<td>1.77</td>
</tr>
<tr>
<td>610-15-3</td>
<td>458</td>
<td>11.634</td>
<td>6.86</td>
<td>8.61</td>
<td>92.6</td>
<td>2.0</td>
<td>4.19</td>
<td>3.88</td>
<td>0.08</td>
<td>1.292</td>
<td>0.331</td>
<td>−11</td>
<td>1.07</td>
<td>1.98</td>
</tr>
<tr>
<td>610-16-4</td>
<td>507.87</td>
<td>12.943</td>
<td>6.34</td>
<td>12.34</td>
<td>93.4</td>
<td>6.1</td>
<td>4.19</td>
<td>3.91</td>
<td>0.26</td>
<td>1.409</td>
<td>0.263</td>
<td>−9</td>
<td>1.24</td>
<td>1.80</td>
</tr>
</tbody>
</table>
Table 2
Data for Gardar Drift Site 611

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Depth (mbsf)</th>
<th>Age (Ma)</th>
<th>Granisize (Φ_{50})</th>
<th>Granisize (µm)</th>
<th>% CaCO$_3$</th>
<th>% terrigenous component</th>
<th>MAR (g/cm2/ky)</th>
<th>CaCO$_3$ MAR (g/cm2/ky)</th>
<th>Terrigenous MAR (g/cm2/ky)</th>
<th>P^*</th>
<th>T</th>
<th>Bulk susc. ($\times 10^{-6}$ SI)</th>
<th>δ^{13}C (‰)</th>
<th>δ^{18}C (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>611C-2-2</td>
<td>4.44</td>
<td>0.085</td>
<td>5.7</td>
<td>19.24</td>
<td>74.4</td>
<td>5.8</td>
<td>3.46</td>
<td>2.57</td>
<td>0.20</td>
<td>1.013</td>
<td>0.667</td>
<td>293</td>
<td>0.709</td>
<td>2.757</td>
</tr>
<tr>
<td>611C-4-2</td>
<td>14.46</td>
<td>0.277</td>
<td>5.85</td>
<td>17.34</td>
<td>68.1</td>
<td>6.8</td>
<td>3.46</td>
<td>2.35</td>
<td>0.23</td>
<td>1.011</td>
<td>-0.244</td>
<td>423</td>
<td>0.785</td>
<td>3.566</td>
</tr>
<tr>
<td>611C-6-2</td>
<td>33.96</td>
<td>0.651</td>
<td>5.88</td>
<td>16.98</td>
<td>54.7</td>
<td>22.7</td>
<td>3.46</td>
<td>1.89</td>
<td>0.78</td>
<td>1.009</td>
<td>0.751</td>
<td>606</td>
<td>0.534</td>
<td>3.295</td>
</tr>
<tr>
<td>611C-8-2</td>
<td>53.12</td>
<td>1.018</td>
<td>6.75</td>
<td>9.29</td>
<td>64.4</td>
<td>15.7</td>
<td>3.46</td>
<td>2.23</td>
<td>0.54</td>
<td>1.015</td>
<td>0.651</td>
<td>1007</td>
<td>0.707</td>
<td>27.65</td>
</tr>
<tr>
<td>611C-10-2</td>
<td>72.32</td>
<td>1.385</td>
<td>6.68</td>
<td>9.75</td>
<td>55.0</td>
<td>17.6</td>
<td>3.46</td>
<td>1.90</td>
<td>0.61</td>
<td>1.004</td>
<td>-0.236</td>
<td>1282</td>
<td>1.163</td>
<td>29.40</td>
</tr>
<tr>
<td>611C-12-2</td>
<td>91.87</td>
<td>1.760</td>
<td>6.52</td>
<td>10.90</td>
<td>53.2</td>
<td>18.1</td>
<td>3.46</td>
<td>1.84</td>
<td>0.62</td>
<td>1.009</td>
<td>-0.256</td>
<td>877</td>
<td></td>
<td></td>
</tr>
<tr>
<td>611C-14-2</td>
<td>110.7</td>
<td>2.121</td>
<td>5.7</td>
<td>19.24</td>
<td>48.8</td>
<td>24.5</td>
<td>3.46</td>
<td>1.69</td>
<td>0.85</td>
<td>1.007</td>
<td>0.037</td>
<td>962</td>
<td></td>
<td></td>
</tr>
<tr>
<td>611C-16-2</td>
<td>129.94</td>
<td>2.489</td>
<td>6.22</td>
<td>13.42</td>
<td>15.3</td>
<td>32.5</td>
<td>3.46</td>
<td>0.53</td>
<td>1.12</td>
<td>1.008</td>
<td>0.525</td>
<td>1281</td>
<td></td>
<td></td>
</tr>
<tr>
<td>611C-18-2</td>
<td>149.86</td>
<td>2.867</td>
<td>6.52</td>
<td>10.90</td>
<td>68.7</td>
<td>8.6</td>
<td>3.46</td>
<td>2.38</td>
<td>0.30</td>
<td>1.011</td>
<td>-0.048</td>
<td>316</td>
<td>0.033</td>
<td>2.434</td>
</tr>
<tr>
<td>611C-20-2</td>
<td>168.24</td>
<td>3.223</td>
<td>6.1</td>
<td>14.58</td>
<td>85.7</td>
<td>5.9</td>
<td>3.46</td>
<td>2.96</td>
<td>0.20</td>
<td>1.025</td>
<td>0.112</td>
<td>185</td>
<td>0.793</td>
<td>2.310</td>
</tr>
<tr>
<td>611C-22-2</td>
<td>187</td>
<td>3.582</td>
<td>6.82</td>
<td>8.85</td>
<td>77.0</td>
<td>8.8</td>
<td>3.46</td>
<td>2.66</td>
<td>0.30</td>
<td>1.011</td>
<td>-0.434</td>
<td>305</td>
<td>0.765</td>
<td>2.497</td>
</tr>
<tr>
<td>611C-24-2</td>
<td>207.08</td>
<td>3.967</td>
<td>7.07</td>
<td>7.44</td>
<td>68.0</td>
<td>9.1</td>
<td>3.46</td>
<td>2.35</td>
<td>0.31</td>
<td>1.011</td>
<td>0.128</td>
<td>509</td>
<td>-0.926</td>
<td>2.607</td>
</tr>
<tr>
<td>611C-26-2</td>
<td>225.34</td>
<td>4.317</td>
<td>7.7</td>
<td>4.81</td>
<td>92.1</td>
<td>1.1</td>
<td>3.46</td>
<td>3.18</td>
<td>0.04</td>
<td>1.086</td>
<td>-0.210</td>
<td>37</td>
<td>0.918</td>
<td>2.367</td>
</tr>
<tr>
<td>611C-28-2</td>
<td>244.57</td>
<td>4.685</td>
<td>6.8</td>
<td>8.97</td>
<td>84.4</td>
<td>4.6</td>
<td>3.46</td>
<td>2.92</td>
<td>0.16</td>
<td>1.034</td>
<td>-0.101</td>
<td>97</td>
<td>0.507</td>
<td>2.065</td>
</tr>
<tr>
<td>611C-30-3</td>
<td>266.19</td>
<td>5.099</td>
<td>5.58</td>
<td>20.91</td>
<td>87.8</td>
<td>2.9</td>
<td>3.46</td>
<td>3.03</td>
<td>0.10</td>
<td>1.187</td>
<td>-0.371</td>
<td>16</td>
<td>0.881</td>
<td>2.020</td>
</tr>
<tr>
<td>611C-32-1</td>
<td>282.39</td>
<td>5.410</td>
<td>6.85</td>
<td>8.67</td>
<td>88.5</td>
<td>3.4</td>
<td>3.46</td>
<td>3.06</td>
<td>0.12</td>
<td>1.083</td>
<td>-0.213</td>
<td>35</td>
<td>0.384</td>
<td>2.069</td>
</tr>
<tr>
<td>611C-35-1</td>
<td>311.14</td>
<td>5.961</td>
<td>6.19</td>
<td>13.70</td>
<td>83.5</td>
<td>5.4</td>
<td>3.46</td>
<td>2.87</td>
<td>0.19</td>
<td>1.061</td>
<td>0.089</td>
<td>64</td>
<td>0.908</td>
<td>2.142</td>
</tr>
<tr>
<td>611C-36-1</td>
<td>320.07</td>
<td>6.132</td>
<td>6.03</td>
<td>15.30</td>
<td>75.2</td>
<td>8.7</td>
<td>3.46</td>
<td>2.60</td>
<td>0.30</td>
<td>1.036</td>
<td>0.042</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>611C-38-2</td>
<td>341.63</td>
<td>6.545</td>
<td>5.8</td>
<td>17.95</td>
<td>84.4</td>
<td>5.4</td>
<td>3.46</td>
<td>2.92</td>
<td>0.19</td>
<td>1.137</td>
<td>-0.297</td>
<td>22</td>
<td>0.837</td>
<td>1.526</td>
</tr>
<tr>
<td>611C-40-1</td>
<td>358.83</td>
<td>6.874</td>
<td>6.82</td>
<td>8.85</td>
<td>75.0</td>
<td>8.4</td>
<td>3.46</td>
<td>2.59</td>
<td>0.29</td>
<td>1.107</td>
<td>-0.153</td>
<td>29</td>
<td>0.520</td>
<td>1.316</td>
</tr>
<tr>
<td>611C-42-1</td>
<td>377.76</td>
<td>7.237</td>
<td>6.37</td>
<td>12.09</td>
<td>76.8</td>
<td>16.0</td>
<td>3.46</td>
<td>2.65</td>
<td>0.55</td>
<td>1.107</td>
<td>-0.143</td>
<td>28</td>
<td>0.838</td>
<td>1.048</td>
</tr>
</tbody>
</table>
2.4. Radiogenic isotope analysis

Four samples of the extracted terrigenous sediment component (two from the Feni Drift and two from the Gardar Drift) were analyzed for radiogenic isotope geochemistry with the goal of constraining provenance (Table 3, Fig. 3). Samples were digested in screw-top Savillex beakers on hot plates using a combination of HF-HNO₃, HClO₄ and HCl. Rare earth elements (REE) were separated by conventional cation exchange in HCl medium followed by reverse phase (HDEHP) chromatography to separate Nd and Sm. Sr was separated on a strontium-specific crown ether resin (Sr-Spec) on miniaturized columns. Isotopic ratios were determined at the University of Michigan on a Finnigan 262 Thermal Ionization Mass Spectrometer equipped with eight collectors using static mode. The La Jolla Nd and NBS 987 Sr standards gave mean values of $^{143}\text{Nd}/^{144}\text{Nd} = 0.511849 \pm 0.000008$ ($N = 17$) and $^{87}\text{Sr}/^{86}\text{Sr} = 0.710250 \pm 0.000014$ ($N = 74$) over the course of this study, requiring no corrections to the data (Gleason et al., 2002).

\[\frac{^2\text{Sr}^{86}\text{Sr}}{^8\text{Sr}^{86}\text{Sr}} \text{ normalized to } ^{86}\text{Sr}/^{88}\text{Sr} = 0.1194 (2\sigma \text{ errors represent in-run precision by TIMS on 150 ratios}). \]

\[\varepsilon_{\text{Nd}} = 10^\left(\frac{^{143}\text{Nd}/^{144}\text{Nd}(\text{measured})}{^{143}\text{Nd}/^{144}\text{Nd(\text{bulk earth})}} - 1\right), \text{ where } ^{143}\text{Nd}/^{144}\text{Nd(\text{bulk earth})} = 0.512638. \]

2.5. Stable isotope analysis

Oxygen and carbon isotope analyses of foraminifera were determined at the University of California, Santa Cruz, light stable isotope facility on a Prism mass spectrometer with an on-line automated common acid carbonate reaction device (Tables 1 and 2). Analyses were conducted on benthic foraminiferal tests of *Cibicides*, picked individually from each sample and ultrasonically cleaned and dried. External precision on an in-house standard (Carrera Marble) and on NBS carbonate standards is ± 0.05% for $\delta ^{13}\text{C}$ and ± 0.07% for $\delta ^{18}\text{O}$.

2.6. Magnetic analyses

Samples from the DSDP cores contained in plastic paleomagnetic sampling cubes were measured on a KLY-2 Kappa Bridge at the University of Michigan to determine the bulk magnetic susceptibility and the P' and T parameters of the susceptibility ellipsoid (Tables 1 and 2). These latter values denote the anisotropy of magnetic susceptibility or magnetic fabric of a sample. Grains that settle through the water column under no influence from current are randomly oriented in the depositional plane, while those deposited under the influence of a current show a preferred orientation or fabric (Ellwood and Ledbetter, 1977, 1979; Joseph et al., 1998, 2002).

3. Sedimentary record of the Feni and Gardar Drifts

3.1. Site 610: late Cenozoic changes in the Feni Drift

Feni Drift sediment is calcareous ooze, 80–96% CaCO₃, with the remainder being terrigenous mineral grains (Fig. 4). ε_{Nd} and $^{87}\text{Sr}/^{86}\text{Sr}$ values of these mineral
grains indicate an older (continental) sediment source for Feni Drift, supporting the suggestion of Latouche et al. (1987) and Kidd and Hill (1987) (Fig. 3 and Table 3).

Terrigenous and carbonate sediment fluxes provide the history of sedimentation. An increase in the percent terrigenous component and the bulk susceptibility is seen at 2.6 Ma and 1.2 Ma (Figs. 4 and 5) and is reflected in the terrigenous MAR (Fig. 4). Prior to 6 Ma, the CaCO₃ MAR remained fairly constant at ~ 4 g/cm²/ky (Fig. 4). At 6 Ma, there was a sharp decrease to less than 3 g/cm²/ky, corresponding to the lower sedimentation rate during this time. For sediments younger than 3 Ma, the sedimentation rate increased with a corresponding increase in the average CaCO₃ MAR, until ~ 2 Ma. The average terrigenous MAR was very low prior to 2.6 Ma, then increased at 2.6 Ma and then again by a factor of 6 in the Pleistocene.

A pronounced magnetic fabric characterizes Feni Drift sediment older than 2.6 Ma (Fig. 5). Younger sediments have only a very weak fabric. The P' values recorded here are noticeably greater than those we measured at the Gardar Drift (see below), at the Kerguelen Drift (Joseph et al., 2002) or the Antarctic Peninsula drifts (Rea et al., 2003), all of which were in the range of 1.05 to 1.20.

δ^{18}O values of benthic foraminifera from the Feni Drift gradually increased (became heavier) beginning about 3 Ma, in the late Pliocene. δ^{13}C values became lighter in the younger sediments with large variations (1‰) in the Plio/Pleistocene (Fig. 6).

![Fig. 4](image1.png)
Fig. 4. Weight percent and mass accumulation rates of CaCO₃ (a and c) and terrigenous (b and d) components at Site 610 (Feni Drift). The CaCO₃ MAR decrease at 5 Ma reflects a lower sedimentation rate at that time. The increase in the terrigenous MAR at 2.6 Ma corresponds to the onset of Northern Hemisphere glaciation.

![Fig. 5](image2.png)
Fig. 5. Magnetic characteristics of samples from Site 610 (Feni Drift). P' (upper panel, a), bulk susceptibility (upper panel, b) and P' vs. T (lower panel). The decrease in magnetic fabric strength, P', indicates a reduction in current strength. The increase in bulk susceptibility reflects the increase in terrigenous component. The T vs. P' plot shows the general shape of the magnetic tensor.
3.2 Site 611: late Cenozoic changes in the Gardar Drift

Sediments from the Gardar Drift are also calcareous ooze with 80–96% CaCO₃ and the remainder being terrigenous material (Fig. 7). Results of the εNd and ⁸⁷Sr/⁸⁶Sr analyses of the terrigenous component indicate a younger (basaltic) sediment source for the terrigenous minerals in the Gardar Drift (Fig. 3 and Table 3). Bulk susceptibility (Fig. 8) and terrigenous abundance were low during the late Miocene and early Pliocene and increased at 4.5 Ma and 2.6 Ma (Fig. 7). The CaCO₃ MAR was around 2.7 g/cm²/ky and declined between 4.5 and 2.6 Ma to ~ 2 g/cm²/ky (Fig. 7). Terrigenous MAR increased slightly at 4.5 Ma and again at 2.6 Ma (Fig. 7).

The magnetic fabric is strong before the early Pliocene but shows a sharp reduction to low values beginning about 5.2 Ma, with very low values younger that 4.2 Ma (Fig. 8). The values prior to 4.2 Ma are comparable to those obtained by Joseph et al. (2002) at ODP Site 745 in the southern Indian Ocean.

At the Gardar Drift, which is the deeper site, δ¹⁸O values are similar to those at shallower Site 610 in sediment younger than about 6 Ma. Older samples show distinctly lighter values for δ¹⁸O (Fig. 9). δ¹³C values are generally around 0.5‰ with the exception of one pronounced negative value of − 1.0‰ at 4.1 Ma (Fig. 9).

3.3. Paleoceanography of the North Atlantic drifts

Both sites show changes in the terrigenous and carbonate fluxes that occurred around 2.6 Ma, corresponding to the onset of Northern Hemisphere glaciation. At the Feni Drift, the terrigenous MAR increase was several-fold (Fig. 4d); the result of increased continental glacial erosion as evidenced by the geochemistry of the terrigenous grains. The carbonate flux gradually declined during the late Miocene through the mid-Pliocene. The sharp decrease to lower carbonate MAR values at 5 Ma mirrors a decrease in overall sedimentation rate, which later increased to higher values between 3 Ma and 1 Ma (Fig. 4c).
At the Gardar Drift, the terrigenous MAR (Fig. 7d) increased in two steps beginning around 4.5 Ma and again at 2.6 Ma. An increase in ice rafted debris from southeastern Greenland around 4 Ma (St. John and Krissek, 2002) implies glaciers at sea level prior to the onset of full scale Northern Hemisphere glaciation at 2.6 Ma, although Greenland is unlikely to be the source of fine-silt sized terrigenous grains at Site 611. There was also a terrigenous MAR increase at the onset of Northern Hemisphere glaciation at the Gardar Drift and the geochemistry of these materials implicate Iceland as a possible source (Fig. 3). Carbonate fluxes at Site 611 decreased rapidly between 4.5 Ma and 3 Ma and remained somewhat lower until the present (Fig. 7c).

At the Feni Drift Site (2417 m), the magnetic fabric strength was strong prior to the late Pliocene (Fig. 5a). Between 3.2 and 2.5 Ma, the fabric strength fell to very low values and has remained low to the present. We interpret this decrease as marking a reduction in current flow at this time, an end to drift deposition and a concomitant large decrease in the export of cold water from high latitudes. This interpretation is in agreement with histories of North Atlantic Deep Water formation based upon δ13C analyses of benthic foraminifera. Studies of sites at water depths similar to that of DSDP 610 show a strong NADW flux approximately 3 my ago, followed by a pronounced weakening of that flow with the onset of Northern Hemisphere glaciation (Raymo et al., 1992; Ravelo and Andreasen, 2000).

Magnetic fabric strength at the Gardar Drift Site (3220 m) was moderate in the late Miocene to the early Pliocene but declined to low values between 5.2 Ma and 4.2 Ma (Fig. 8a). Similar to the Feni Drift, this decrease implies a decrease in current flow and an end to drift deposition, but occurs almost 2 my earlier. These data show that deep (~ 3220 m) water flow slowed or stopped before more shallow (~ 2417 m) flow did, implying a complex, stepwise reduction in bottom flow during the Pliocene. This evidence for early Pliocene flow reduction was not an anticipated result of our research, but it agrees with the results obtained from the DSDP Leg 94 (Kidd and Hill, 1987).

Prior to 6 Ma, the Gardar Drift sediments had a much lighter benthic δ18O signal than the Feni Drift (Fig. 10). Since Site 611 is the deeper of the two (3220 m)
m), density considerations indicate a water mass that is both warmer and more saline. This shift in isotopic values was also seen at deeper Site 608 (3526 m), but is less than half as large there (~ 0.5‰ at 608) (Wright and Miller, 1996); no similar late Miocene change in δ¹⁸O occurred at Site 610 (2417 m) (Fig. 10). The suggestion of a different water mass before 6 Ma at Site 611 is consistent with the results of Murray (1987) and of Thomas (1987) who analyzed benthic foraminifera assemblages and inferred a latest Miocene change in the nature of the water masses at Site 611. We interpret the light δ¹⁸O values prior to 6 Ma at Site 611 as indicating warm, salty Mediterranean-origin water that flowed out into the Atlantic and north at a depth greater than 2417 m (the depth of Feni Drift). Zhang and Scott (1996), in an extensive stratigraphic study, have documented the presence of paleo-Mediterranean outflow water in the North Atlantic prior to the end of the Miocene. Our data suggest that the main core of this water mass was below 2417 m and closer to 3220 m (Gardar Drift) than 3526 m (Site 608). The closing of the Straits of Gibraltar, which precipitated the Messinian salinity crisis (Hsu¨ et al., 1973; Krijgsman et al., 1999; Seidenkrantz et al., 2000; Duggen et al., 2003), would have terminated this outflow just after 6 Ma. Since the reopening of the Straits of Gibraltar, Mediterranean water flows north along the continental margin of Europe and shoals in the Norwegian Sea, where it is incorporated into the NADW (Reid, 1979).

Carbon isotope values (δ¹³C) for both Sites 611 and 610 correspond well for samples younger than about 5 Ma (Fig. 11). Prior to this, the water mass at Site 611 appeared lighter (older) than at Site 610. There is a large single-point negative value at Site 611, possibly the same as seen by Billups (2002), but the cause of this apparently brief event is not known.

4. Conclusions

Our study of the Feni and Gardar Drifts provides the following insights into North Atlantic paleoceanography. Whereas many of our observations amplify the work of previous investigators (Kidd and Hill, 1987; Raymo et al., 1992; Zhang and Scott, 1996; Krijgsman et al., 1999; Frank et al., 2002; Laberg et al., 2005), the temporal details of the reductions in deep water outflow from the region are new. Prior to approximately 6 Ma, warm salty water from the Mediterranean occupied mid depths, constrained to between 2400 and 3600 m, in the North Atlantic. During these late Miocene times, the Feni and Gardar Drifts were being deposited by deep currents, with the flow at the shallower Feni Drift site being relatively stronger than that at the deeper Gardar Drift site. The gradual closing of the Straits of Gibraltar at the end of the Miocene precipitated the Messinian salinity crisis in the Mediterranean basin and shut off the supply of Mediterranean overflow water to the North Atlantic (as indicated by the δ¹⁸O data).

Krijgsman et al. (1999) note that the Mediterranean became isolated from the North Atlantic between about 5.6 and 5.3 million years ago. Shortly after this time, the deeper Gardar drift current began to slow and the flow was nearly completely gone by 4.2 Ma. We suggest that, without the salt supplied by the Mediterranean outflow water, it was not possible to form waters of adequate density at 3200 m, thus effectively shutting down abyssal flow along the Gardar Drift at Site 611. Abyssal flow at the shallower Feni Drift site remained strong until 3.2 Ma and declined rapidly by about 2.5 Ma, corresponding to the beginnings of full-
scale Northern Hemisphere glaciation. The onset of Northern Hemisphere glaciation is also signaled by the large increase in the mass accumulation rate of continentally derived minerals in these North Atlantic sites.

To the extent that deep outflow waters exiting the North Atlantic are replaced by the surficial inflow of relatively warmer waters, the stepwise reduction in flow along the Gardar and Feni Drifts, beginning when the Mediterranean became closed to the North Atlantic, must be intimately associated with the late Cenozoic global cooling.

Acknowledgments

We wish to thank the ODP East Coast Repository at Lamont-Doherty Earth Observatory at Columbia University for providing the samples used in this study. We thank Joel Blum, Andrea Klaue and Marcus Johnson of the Michigan Radiogenic Isotope Geochemistry Laboratory for their assistance with the isotopic analyses. N. Hassold was supported by a fellowship from the Rackham Graduate School at the University of Michigan. A Turner Grant from the Department of Geological Sciences at the University of Michigan funded the radiogenic isotope analyses. We also thank Jan Bloemendal and an anonymous reviewer for providing helpful comments.

References

