Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah

John G. Solum*, Ben A. van der Pluijm, Donald R. Peacor

Department of Geological Sciences, University of Michigan, 425 E. University Ave., 2534 C. C. Little Bldg. Ann Arbor, MI 48109-1063, USA

Received 25 January 2005; received in revised form 5 April 2005; accepted 8 May 2005
Available online 21 July 2005

Abstract

Pronounced changes in clay mineral assemblages are preserved along the Moab Fault (Utah). Gouge is enriched up to \(\approx 40\% \) in 1Md illite relative to protolith, whereas altered protolith in the damage zone is enriched up to \(\approx 50\% \) relative to gouge. These mineralogical changes indicate that clay gouge is formed not solely through mechanical incorporation of protolith, but also through fault-related authigenesis. The timing of mineralization is determined using \(^{40}\text{Ar}/^{39}\text{Ar} \) dating of size fractions of fault rocks with varying detrital and authigenic clay content. We applied Ar dating of illite–smectite samples, as well as a newer approach that uses illite polytypes. Our analysis yields overlapping, early Paleocene ages for neoformed (1Md) gouge illite (63 +2 Ma) and illite–smectite in the damage zone (60 +2 Ma), which are compatible with results elsewhere. These ages represent the latest period of major fault motion, and demonstrate that the fault fabrics are not the result of recent alteration.

The clay fabrics in fault rocks are poorly developed, indicating that fluids were not confined to the fault zone by preferentially oriented clays; rather we propose that fluids in the illite-rich gouge were isolated by adjacent lower permeability, illite–smectite-bearing rocks in the damage zone.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Clay gouge; \(^{40}\text{Ar}/^{39}\text{Ar} \) dating; Moab Fault

1. Introduction

Clay gouge in faulted sedimentary rocks, a factor in predicting the sealing behavior of faults, is often described in terms of shale smear, or shale gouge ratio (e.g. Yielding et al., 1997; Jones and Hillis, 2003). This reflects a school of thought that clay gouge forms dominantly through the mechanical incorporation of protolith clays into a fault zone. While this is true in some settings, it does not entirely account for clay gouge formation, as fault-related clay mineralization can also be significant (Vrolijk and van der Pluijm, 1999; Yan et al., 2001). Several studies have described the gouge along the Moab Fault from a mechanical point of view (Foxford et al., 1998; Garden et al., 2001; Davatzes and Aydin, 2005). We explore the nature of fault-related clay mineralization in a well-exposed outcrop of the Moab Fault. We track fault-related changes in clay mineralogy by quantifying concentrations of both illite polytypes (2M1 and 1Md) and discrete illite/mixed-layer illite–smectite (I–S). This combination of techniques improves upon earlier methods that used only discrete illite/mixed-layer I–S, and allows clay gouge to be directly dated, as discussed below.

Studies of clays in fault zones also have implications for fault mechanics. Observations of many natural faults indicate that they are mechanically weaker than predicted from Byerlee’s Law (Kanamori and Anderson, 1975; Lachenbruch and Sass, 1980; Mount and Suppe, 1987; Zoback, 2000). Elevated fluid pressure and a corresponding reduction in effective stress is a favored cause of weak-fault behavior (Hubbert and Rubey, 1959; Sibson, 1990, 2003; Rice, 1992; Faulkner and Rutter, 2001). Clay growth in fault zones and the influence of clays on the permeability structure of fault zones have also been suggested as explanations for such weak-fault behavior (Wang, 1984; Rice, 1992). This scenario requires a mechanism that
confines fluids to the fault core and prevents them from escaping through zones of otherwise fractured host rock. A well-developed clay fabric developed parallel to the fault has been suggested as one mechanism (e.g. Faulkner and Rutter, 2001). However, few quantitative measurements have been made of clay fabrics in fault zones, although the development of fault-normal zones of fine-grained material have been observed in natural (e.g. Evans et al., 1997) and artificial gouge (Scruggs and Tullis, 1998; Zhang et al., 1999; Zhang and Cox, 2000). This study helps to address that problem.

2. Geologic setting

The Moab Fault (Fig. 1), located in east central Utah, is a normal fault with a long and complex history of deformation and fluid flow. The movement and dissolution of salt from the Paradox Formation has dominated the geologic history of this region of the Colorado Plateau from the time of salt deposition in the Pennsylvanian until the present (Huntoon, 1988; Oviatt, 1988). Moab Fault growth began in the Triassic in response to salt tectonism (Doelling, 1988). Subsequently, the Moab Fault grew intermittently throughout the Mesozoic and into the Tertiary (Foxford et al., 1996, 1998). While the Moab Fault grew intermittently throughout the Mesozoic and into the Tertiary (Foxford et al., 1996, 1998). While Tertiary reactivation is likely salt-related, several alternate causes for this reactivation have been proposed (Olig et al., 1996).

The history of fluid flow in and around the Moab Fault has been documented through examinations of stable isotopes (Pevear et al., 1997), manganese mineralization (Chan et al., 2001), calcite cementation, and reduction fronts (Garden et al., 2001). These studies demonstrate that fluid flow in and around the Moab Fault zone has occurred.

Olig et al. (1996) divided the Moab Fault into a northern (16 km long), a central (19 km long), and a southern section (19 km long). The study site for this paper is located along the central section, which accommodated the most displacement (Olig et al., 1996). A single well-preserved exposure of the Moab Fault was characterized in great detail as part of this study (Fig. 2). The fault is composed of a main strand with a throw of ~900 m, and a minor strand with a throw of ~60 m (Foxford et al., 1998). The Pennsylvanian Honaker Trail Formation and Permian Cutler Group and the Jurassic Entrada Formation are juxtaposed across the main strand, and the Entrada Formation is juxtaposed against the Salt Wash Member of the Jurassic Morrison Formation across the minor fault. The stratigraphy of the study area is shown in Table 1. The main fault strand consists of a gouge zone, or fault core (using the terminology of Caine et al. (1996)), that is 1–2 m wide. The gouge zone has a mesoscopic fabric that is often fault parallel, but with a variable attitude that includes several zones where the fabric is at a high angle to the fault. The gouge is clay-rich with occasional clasts of comminuted quartz sandstone derived from the country rock, and is bound by a region of less intensely deformed material (the damage zone using the classification of Caine et al., 1996). This zone is characterized by fractured and cataclasically deformed sandstones and shales from the Permian Cutler group, although discontinuous bedding is still visible and in some instances it can be traced to undeformed bedding farther from the fault. For the purposes of this study, the minor fault and the trapped sliver of the Entrada Formation are included as part of the damage zone of the major fault strand. The damage zone is bound by undisturbed protolith at both sides of the fault zone.

The study described in this paper will examine the involvement of clays in a well-exposed extensional fault zone. The objectives of this study are to (1) quantify fault-related clay neomineralization; (2) quantify fabrics in clay-rich fault rocks and protolith; (3) use the above characterizations to date the fault fabric using a modified version of the illite dating technique described in van der Pluijm et al. (2001); and (4) hypothesize how fault-related clay neomineralization and fabric development may influence the permeability structure of the fault zone.

3. Methods

3.1. Illite and illite–smectite

3.1.1. Sampling

Seventeen samples were collected from a traverse across the Moab Fault zone, including eight samples from the Salt Wash Member of the Morrison Formation (collected from a shale-rich bed at distances of 2–59 m from the fault core), two samples of the Cutler Formation (collected from 8 to 9 m from the fault core), three samples of clay gouge (two from the main strand, one from the minor strand), and four samples from the damage zone derived from the Cutler Formation (at distances from 0 to 8 m from the fault core). The outer 10–20 cm of material was removed from sampling locations to allow the collection of samples that were uncontaminated by surface weathering. In order to eliminate interference on diffractograms from non-clay minerals, the <4 μm size fraction was extracted from all samples. Samples were prepared in a jaw crushe, suspended in water, and ultrasonically disaggregated. Following this, the suspensions were allowed to settle and the <4 μm size fractions were extracted.

3.1.2. Illite polytypism

Illite occurs as two polytypes, 2M₁ and 1M₄, which reflects variations in the way clay mineral interlayering is uniquely arranged for individual polytypes. In the 2M₁ polytype, the stacking is ordered, alternate layers being related by rotations of 180° about the layer normal, resulting in stacking with a periodicity of 2 nm (20 Å). In the ideal 1M₄ polytype, all layers are related by different rotation angles. These rotational variations can be detected through either X-ray diffraction
(XRD) or selected area electron diffraction (SAED) using transmission electron microscopy (TEM).

Using XRD, it is possible to quantify the relative amounts of 2M$_1$ and 1M$_d$ illite, as well as the proportion of discrete illite to I–S, as discussed below. The amount of 2M$_1$ illite may be quantified using XRD patterns from a randomly oriented sample, achieved using a side packing device as described by Moore and Reynolds (1997). It is
critical to obtain a sample with a random orientation because the peaks that are diagnostic of polytypes have non-(001) indices that are absent in oriented samples. The concentration of the 2M1 polytype is determined by measuring the area of five peaks that are unique to the 2M1 polytype and ratioing them against the area of a peak at ~35° 2θ that is common to both polytypes (labeled ‘2M1 and 1Md’) is a function of the concentration of 2M1 and 1Md illite, which can be quantified using the method of Grathoff and Moore (1996). All five 2M1-specific peaks cannot necessarily be used on each sample due to overlap with other minerals, such as K-feldspar. Unused illite and I–S peaks or peaks belonging to other phases are abbreviated as follows: illite (ill), I–S (i–s), quartz (qtz), kaolinite (kaol) K-feldspar (kfs) and hematite (hm).

3.1.3. Discrete illite and mixed-layer I–S
Grains containing both illite and smectite are known as I–S, and are classified by the number and degree of ordering of smectite- and illite-like interlayers. The number of interlayers is given by the percent smectite in a sample, and the ordering is expressed by ‘Reichweite’ (R), where R0 corresponds to random interlayering, R1 corresponds to alternating illite and smectite interlayers, R2 corresponds to two smectite interlayers followed by an illite, etc. The amount of I–S is determined using the program NEWMOD (Reynolds and Reynolds, 1996) by calculating powder
Table 1
Simplified stratigraphy of the Moab area (after Doelling et al., 1988, Table 1)

<table>
<thead>
<tr>
<th>Age</th>
<th>Formation</th>
<th>Lithology</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cretaceous</td>
<td>Mancos (upper, Ferron, and lower members)</td>
<td>Marine shale with some sandstone and sandy shale in the Ferron member</td>
<td>1080–1180 m</td>
</tr>
<tr>
<td></td>
<td>Daktoa</td>
<td>Sandstone to conglomerate with some sandy shale</td>
<td>0–37 m</td>
</tr>
<tr>
<td></td>
<td>Cedar Mountain</td>
<td>Silty mudstone with interbedded sandstone and conglomerate</td>
<td>12–76 m</td>
</tr>
<tr>
<td>Jurassic</td>
<td>Morrison (Brushy Basin, Salt Wash, and Tidwell members)</td>
<td>Brushy Basin member is mudstone with some sandstone, conglomerate and limestone. Salt Wash member is sandstone with interbedded mud- and silstones. Tidwell member is silty shale</td>
<td>136–245 m</td>
</tr>
<tr>
<td></td>
<td>Curtis, Moab member</td>
<td>Formerly Moab Tongue of the Entrada formation</td>
<td>0–42 m</td>
</tr>
<tr>
<td></td>
<td>Entrada, Slick Rock member</td>
<td>Fine to medium eolian sandstone</td>
<td>43–152 m</td>
</tr>
<tr>
<td></td>
<td>Carmel, Dewey Bridge member</td>
<td>Silty sandstone. Formerly Dewey Bridge member of the Entrada formation</td>
<td>8–72 m</td>
</tr>
<tr>
<td></td>
<td>Navajo</td>
<td>Fine eolian sandstone</td>
<td>0–225 m</td>
</tr>
<tr>
<td></td>
<td>Kayenta</td>
<td>Sandstone</td>
<td>30–90 m</td>
</tr>
<tr>
<td></td>
<td>Wingate</td>
<td>Fine quartz sandstone</td>
<td>75–137 m</td>
</tr>
<tr>
<td>Triassic</td>
<td>Chine</td>
<td>Silty sandstone and mudstone and gritstone</td>
<td>0–275 m</td>
</tr>
<tr>
<td></td>
<td>Moenkopi</td>
<td>Sandy shale with micaceous silty sandstone</td>
<td>0–400 m</td>
</tr>
<tr>
<td>Permian</td>
<td>Cutler</td>
<td>Sandstone and conglomerate with micaceous sandy shales</td>
<td>0–2450 m</td>
</tr>
<tr>
<td></td>
<td>Honaker Trail</td>
<td>Limestone, shale and sandstone</td>
<td>0–1525 m</td>
</tr>
<tr>
<td></td>
<td>Paradox Formation</td>
<td>Evaporites with black shale and thin limestone and sandstone</td>
<td>0–1370 m</td>
</tr>
</tbody>
</table>

patterns for various mixtures of illite and I–S (with varying numbers and orderings of smectite interlayers) and visually comparing these synthetic powder patterns to the experimental powder patterns until a match is found (Fig. 5). In this case, sample preparations imparting a well-developed preferred orientation were used to enhance the intensities of the (001) peaks, which provide the most information about I–S. Oriented preparations were made by drying clay/water slurries on glass slides. The slides were placed in a chamber containing ethylene glycol to cause expansion of smectite interlayers, allowing for greater ease of detection of smectite-bearing phases on powder diffraction patterns.

3.2. Clay fabrics

Quantification of clay fabrics is complicated by very fine grain sizes. The fabric intensities of fault rock and protolith were measured using X-ray texture goniometry (XTG), which provides a reliable measure of the degree of alignment of clays (van der Pluijm et al., 1994). Twenty-four pole figures from seven hand samples from the gouge zone, damage zone and protolith were collected. With XTG, a \(\sim 200–400 \mu \text{m} \)-thick resin-impregnated sample is placed in a modified single-crystal X-ray diffractometer with a molybdenum source \(\lambda \text{Kz} = 0.707 \) Å. The phases present in the sample are identified through collection of a diffractionogram, and the detector is then moved to the value of 2\(\theta \), which corresponds to the (001) plane of the mineral to be analyzed \(d = 1 \) nm (10 Å) for illite, 1–1.5 nm (10–15 Å) for I–S, 0.7 nm (7 Å) for kaolinite, and the sample is then automatically rotated through 1296 positions. The location and the intensity of the diffracted X-ray beam at each of those locations are plotted in an equal area projection and then contoured using multiples of a random distribution (MRD), a statistical measure of the randomness of a distribution that is functionally equivalent to percentage per 1% area (Wenk, 1985). The greater the MRD value, the ‘higher’ the peak on the equal area net, and the better aligned the clay fabric. In addition, scanning electron microscopy (SEM) was obtained from five thin sections and TEM images were obtained from four specimens to confirm the distributions of clay minerals in the samples. Anisotropy of magnetic susceptibility (AMS) has also been used to characterize clay fabrics (Hayman et al., 2004; Solum, 2005).

3.3. Gouge dating

As in other dating studies of fault rocks (e.g. Vrolijk and van der Pluijm, 1999; van der Pluijm et al., 2001), dating of Moab gouge is complicated by the presence of illite as a mixture of detrital and neoformed grains. The occurrence of multiple illite polytypes in clay-bearing samples, and variations between polytype composition and age, has long been recognized (Hower et al., 1963; Velde and Hower, 1963; Pevear, 1999). These workers found that in shales the age of the finest fraction (rich in I–S and disordered illite) was younger than the age of deposition, whereas the age of the coarsest fraction (rich in discrete 2M1 illite) was older. These observations indicate that the illite in the sample is composed of a detrital population and a neoformed authigenic population (e.g. Pevear, 1999).

As indicated above, any single gouge age is a mixing age, and has limited geological significance (Pevear, 1999). This
restriction is overcome by separating a sample into three size fractions; coarse (0.5–2 μm), medium (0.05–0.5 μm) and fine (<0.05 μm), and determining the proportion of detrital to authigenic illite for each of these fractions. There are two potential ways to quantify the amounts of detrital and authigenic material. The first is to use polytypism; the amount of 2M1 illite is equivalent to the amount of detrital illite, and the 1M4 polytype is equivalent to the neoformed fraction of the sample (see also Grathoff and Moore, 1996; Grathoff et al., 1998). The second is to quantify the amount of discrete illite and I–S. Discrete illite can be considered to be detrital and I–S to be authigenic (Pevear, 1999). In order
to recognize detrital and authigenic clays, it is first necessary to identify the fault-related change(s) in the clay mineral assemblages: if 1Md illite is neoformed (if fault rocks are enriched in 1Md illite), then the proportion of 2M1 to 1Md should be used; if I–S is formed (if fault rocks are enriched in I–S), then the proportion of discrete illite to I–S should be used. It should be noted that the two scenarios can be complementary. Once the proportion of detrital and neoformed illite is determined, each of the fractions is then dated using the 40Ar/39Ar technique after being encapsulated in a quartz vial to prevent argon loss due to recoil (for method see van der Pluijm et al. (2001)). The age spectra will not have plateaus due to argon recoil (Dong et al., 1995) and because they are composed of mixtures of grains of different ages. Therefore, the total gas age is used to determine the age of the sample. The age and the percent detrital illite of the coarse, medium, and fine fractions are plotted, and the extrapolated value that corresponds to 0% detrital (2M1 and/or discrete illite) illite can be determined, corresponding to the age of the neoformed clays (1Md illite and/or I–S), and, therefore, to the age of the fault fabric (van der Pluijm et al., 2001; Ylagan et al., 2002). When applied to undeformed shales, the age corresponds to the timing of clay neomineralization during diagenesis (Pevear, 1999), or the age of clay neomineralization associated with a hydrothermal event (Grathoff et al., 2001).

4. Results
4.1. Polytypism and I–S results

Relative proportions of illite polytype and discrete illite vs. I–S are plotted in Fig. 6. Discrete illite plus mixed-layer I–S are summed to 100%, and 2M1 illite plus 1Md illite to 100%. The Mesozoic protolith is characterized by low concentrations of both discrete illite (15–55%) and 2M1 illite (5–37%). These samples are characterized by mixed-layer 1Md I–S. The more-mature Paleozoic protolith is characterized by greater concentrations of both discrete illite (80–100%) and 2M1 illite (45–85%), the latter undifferentiated from 2M1 muscovite. The progression from mixed-layer 1Md I–S to discrete 2M1 illite is in agreement with the expected progression from 2M1-poor, I–S-rich material to 2M1-rich, I–S-poor material with
increasing metamorphic grade (Arkai et al., 1996; Merriman and Peacor, 1999). The gouge from the main strand (point A on Fig. 6) is composed of 24% 2M₁ illite and 83% discrete illite (in other words it is composed largely of discrete 1M₄ illite). A sample from the damage zone between the Cutler formation and the major gouge zone (point B on Fig. 6) is composed of 77% 2M₁ illite and 46% discrete illite (this material is composed in part of mixed-layer 2M₁ illite smectite). The rest of the samples from the damage zone (C on Fig. 6) plot on a line between the Paleozoic and Mesozoic protolith, as does one sample from the minor gouge zone. One sample from the minor gouge zone plots with the Mesozoic protolith (D on Fig. 6).

4.2. Clay fabrics

XTG analysis shows that clay fabrics in fault rocks from the Moab Fault are poorly developed, and, in fact, have been degraded by up to ~65% from the Cutler Group host rock (Fig. 7), although the difference is less pronounced compared with the Morrison Formation host rock. Back-scattered electron (BSE) SEM images show that large (up to ~100 μm) grains of muscovite (equivalent to 2M₁ illite for the purposes of this study) and biotite generally form a well-defined fabric that is bedding-parallel in both Mesozoic and Paleozoic protoliths (Fig. 8A and B). In contrast, there is no clear foliation fabric in the damage zone (Fig. 8C), compatible with XTG measurements; however, there are a few poorly defined, discontinuous I–S shears in a matrix of cataclastically deformed protolith. Significantly, there is also no pronounced fabric apparent in the gouge (Fig. 8D). While foliation is visible on the BSE images, the orientation is variable. Reworked clasts of gouge are present, and the orientation of foliation in these clasts relative to the fault is random. Fabric intensities in Moab protolith and fault rocks are plotted relative to the values from other fault zones in Fig. 9. The significance of the low degree of preferred orientation is discussed below.

4.3. Gouge dating

The age analysis plot from the Moab Fault samples is depicted in Fig. 10, and data are listed in Table 2. The age of the neoformed 1M₄ illite in the gouge is well defined at ~63±2 Ma (point A on Fig. 6), and the age of the neoformed illite–smectite in the I–S-rich region adjacent to the gouge (i.e. the damage zone) is similarly well constrained at ~60±2 Ma (point B on Fig. 6). As clay neominaleralization in the gouge is characterized by 1M₄ illite neoformation, the proportion of detrital and neoformed phases in the gouge are determined by measuring polytypes. As the neominaleralization in the damage zone is characterized by I–S neoformation, the proportions of detrital and authigenic material in that area is quantified by determining the abundances of mixed-layer I–S and discrete illite. Beside Ar dating uncertainties, errors on these age determinations are largely dependent on the reliability of the illite compositional analysis. We conservatively assume an error of ±3% for compositional work based on an absolute precision of 2–5% reported for the polytype quantification method (Gratoff and Moore, 1996), which would result in an age error that is on the order of ±2 my. Thus, the age of both gouge and neighboring fractured host, obtained from age analyses of compositionally distinct samples, are statistically indistinguishable, giving an early Paleocene age for the formation of these fault rocks.

5. Discussion

Many workers have attributed the existence of gouge to mostly mechanical processes. For example, gouge along the Moab Fault is referred to as ‘shale smear’ by Garden et al. (2001). Foxford et al. (1998) attributed the origin of clay gouge in this location to mechanical incorporation of pre-Wingate Formation shale units (such as the Triassic Chinle and Moenkopi Formations, the Permian Cutler Group, and the Pennsylvanian Honaker Trail Formation). A characteristic of all of these formations is that they contain abundant detrital mica (i.e. 2M₁ muscovite/illite). Therefore, if the gouge is mechanically derived from these formations it should similarly contain abundant 2M₁ illite, which is not observed. As shown in Fig. 6, the samples from the 2M₁-rich Cutler group do not plot with the samples of gouge from the major strand of the fault or with samples from the intervening damage zone, indicating that fault-related clay mineral transformations have occurred. It is possible that the gouge is the result of mixing of Paleozoic protolith with the 2M₁-poor Mesozoic shales. However, the clay mineral assemblages from fault rocks do not plot on a line connecting Paleozoic and Mesozoic protoliths, indicating that these mineral assemblages cannot be solely the result of

<table>
<thead>
<tr>
<th>Size fraction</th>
<th>% Detrital (2M₁)</th>
<th>Total gas age (Ma)</th>
<th>Exp(ζt)–1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse (0.5–<2 μm)</td>
<td>21.6</td>
<td>244.2</td>
<td>0.1449</td>
</tr>
<tr>
<td>Medium (0.05–<0.5 mm)</td>
<td>8.44</td>
<td>141.0</td>
<td>0.0813</td>
</tr>
<tr>
<td>Fine (<0.05 mm)</td>
<td>2.4</td>
<td>80.7</td>
<td>0.0457</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size fraction</th>
<th>% Detrital (discrete illite)</th>
<th>Total gas age (Ma)</th>
<th>Exp(ζt)–1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse (0.5–<2 μm)</td>
<td>36.9</td>
<td>213.7</td>
<td>0.1258</td>
</tr>
<tr>
<td>Medium (0.05–<0.5 mm)</td>
<td>19.04</td>
<td>122.5</td>
<td>0.0703</td>
</tr>
<tr>
<td>Fine (<0.05 mm)</td>
<td>4.22</td>
<td>86.0</td>
<td>0.0488</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size fraction</th>
<th>% Detrital (0% 2M₁ illite)</th>
<th>Detrital age (100% discrete illite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse (0.5–<2 μm)</td>
<td>4.33</td>
<td>243.8 ± 13 Ma</td>
</tr>
<tr>
<td>Medium (0.05–<0.5 mm)</td>
<td>5.62</td>
<td>234.8 ± 13 Ma</td>
</tr>
<tr>
<td>Fine (<0.05 mm)</td>
<td>6.88</td>
<td>224.8 ± 13 Ma</td>
</tr>
</tbody>
</table>
mixing of Mesozoic and Paleozoic protoliths. Rather, our results indicate that fault-related changes in mineral species occurred. The most intensely deformed rocks (i.e. gouge from the major strand—point A on Fig. 6) are enriched in discrete 1M\text{d} illite and contain very little 2M\text{I} illite (a ‘fingerprint’ of the protoliths discussed above), whereas the lesser deformed samples from the damage zone between the major strand and the Cutler Formation (point B on Fig. 6) contain little discrete illite, and relatively little 1M\text{d} illite (and therefore correspondingly greater amounts of I–S).

Foxford et al. (1998) attributed the gouge in the minor strand to clays mechanically derived from the Morrison Formation. Unlike gouge along the major strand, a sample from the minor strand plots with samples from that formation (point C on Fig. 6), which supports the idea that this gouge was mechanically derived. In addition, another sample from that minor strand (point D on Fig. 6) contains significant 2M\text{I} illite, which is interpreted as a signature of the Triassic or Paleozoic protolith, as discussed above. It is therefore possible that this sample represents material mechanically derived from those formations. The two samples that plot near point B are from the damage zone/major fault core contact and possibly represent similar mechanically incorporated material.

The XTG fabric measurements eliminate fault rock anisotropy caused by clay as a mechanism that would allow fluids to be confined to the core of the Moab Fault (i.e. to be isolated from fluids in the damage zone or protolith). This eliminates a mechanism by which high pressure fluids could have been confined to the core of the Moab Fault (assuming such fluids existed). Interestingly, previous studies of quantitative fabric intensity in other fault zones have similarly revealed that clay fabrics in gouge are typically poorly developed (Vrolijk and van der Pluijm, 1999; Yan et al., 2001; Solum et al., 2003; Fig. 10). This lack of a well-developed fabric may be partially due to mechanical deformation and associated rotation of grains, but mostly by growth of clays without a significant preferred orientation.

Fig. 7. Representative XTG pole figures and summary fabric intensities plotted on a schematic cross-section through the Moab Fault zone with Mesozoic protolith (hanging wall) on the left (labeled ‘Mz’) and Paleozoic protolith (footwall) on the right (labeled ‘Pz’). The values from the fault core are denoted by a gray box labeled ‘gouge’, while the damage zone is denoted by a lighter gray box labeled ‘d.z.’. The fabric intensities in fault rocks are low (~1.8–5 MRD compared with ~3–8 MRD in protolith).
The widespread fault-related mineralization indicates a fluid-rich environment that promoted clay dissolution and new growth. Indeed, the occurrence of fluid flow along the Moab Fault is well established (e.g. Chan et al., 2000, 2001), although the pressure of those fluids is unknown. Garden et al. (2001) suggested that the Moab Fault acted as a seal for migrating hydrocarbons, allowing pressure to increase, although they state that the Moab Fault was not itself a conduit. We hypothesize that lateral fluid flux out of the illite-rich gouge zone (supralithostatic pressure or otherwise) was limited not by a clay fabric, but by neighboring illite–smectite-rich rocks that sealed the fault core. Morrow et al. (1984, fig. 3) found that a pure smectite sample and three natural I–S-bearing gouge samples have a water permeability of \(3\times10^{-22}\) m\(^2\) at a confining pressure of 200 MPa, while a pure illite sample has a permeability of \(3\times10^{-21}\) m\(^2\) under the same confining pressure. This is similar to the argon permeability of natural illite/chlorite/quartz gouge reported by Faulkner and Rutter (2001, fig. 1) of \(10^{-19}\)–\(10^{-21}\) m\(^2\) at a confining pressure of 200 MPa and \(10^{-18}\)–\(10^{-20}\) m\(^2\) at a confining pressure of 100 MPa. It is also possible that the permeability of the gouge is transiently increased by coseismic dilatancy. We argue that fluid in the gouge would be able to migrate freely along variable pathways, but are relatively confined to the gouge by the lower-permeability illite–smectite-rich damage zone. A schematic illustration of this proposed permeability structure of the fault zone is shown in Fig. 11. This hypothetical model is not intended to provide a quantitative model of the permeability structure of the Moab Fault zone, but offers a qualitative representation of the permeability structure of this fault. This model does not take into account fractures of deformation bands in sandstone (Davatzes et al., 2005), which also influence fault zone permeability. Similar to this scenario, others have proposed that mineral (silica or calcite) precipitation in fault zones forms seals that allow elevated fluid pressure to develop (Blanpied et al., 1992; Byerlee, 1993).
Information on fault properties and mechanics from exhumed fault rocks requires that their characteristics are preserved from the time of faulting, which is determined by fabric dating. Stratigraphic relationships indicate that the Moab Fault was active intermittently from the late Paleozoic, through the Mesozoic and into the Tertiary. Whereas this part of the Colorado Plateau is seismically active, there is no evidence that the Moab Fault was active in the Quaternary (Olig et al., 1996; Wong et al., 1996). Our dating shows that Paleozoic and Mesozoic episodes of motion along the Moab Fault are not preserved, and that the last period of major activity along the fault occurred in the early Tertiary age. Pevear et al. (1997) reported ages of 50–60 Ma from K–Ar analysis of clay gouge along the northern section of the Moab Fault, whereas the Miocene age for mineral veins along the Moab Fault to the south (Chan et al., 2001) most likely represents mineralization associated with igneous activity in the nearby La Sal mountains, an interpretation suggested by these authors. The age of faulting reported in this study occurred just after the proposed time of maximum burial at ~60 Ma (Pevear et al., 1997), although the burial curves of Nuccio and Condon (1996) indicate that burial was not reached until ~40 Ma. Moreover, Garden et al. (2001) concluded that hydrocarbon migration in the Moab Anticline occurred at ~65 Ma, which is compatible with our age of 60–63 Ma, and the interpretation that associated changes in clay mineralogy in fault rocks are related to fluid flow. Beside the regional significance of the age, our dating confirms that the fabrics preserved in the exhumed fault zone rocks are ancient, permitting inferences about the behavior of the fault to be made from the observed mineral assemblages and fabrics. It should be noted that we are not attempting to directly relate fault-related clay mineralization to slip events; whether the mineralization occurred coseismically or postseismically cannot be determined from this study. Therefore, it is most accurate to say that the clay mineralization occurred during the period of time over which the fault was active.

6. Conclusions

The results from this study of the Moab Fault demonstrate that faulting was responsible for >50% neocrystallized illite by dissolution and new growth in fault gouge and formation of I–S in the damage zone, requiring major fluid involvement. Thus, gouge is not merely the result of the mechanical incorporation of clays from the host rocks in the faulted stratigraphic sequence. Neocrystallization of clays permitted the application of two approaches to dating of the fault rocks, involving discrete illite/mixed-layer I–S dating for the damage zone and 2M1/1Md illite polytype dating for the fault core. Both approaches give overlapping results, showing that the latest period of activity along this exposure of the Moab Fault, and indicates that the mineral assemblages and fabrics in the Moab Fault zone are not the result of recent alteration.

Fig. 9. Fabric intensities from a variety of geologic settings quantified using X-ray texture goniometry. Samples from Moab are shown as light gray symbols. Samples from other studies are shown in black (Solum et al., 2003).

Fig. 10. Illite age analysis for the Moab Fault. The age and percent detrital illite of the coarse, medium and fine fractions are plotted, and an age that corresponds to 0% detrital/100% authigenic content is extrapolated, which corresponds to the age of neoformed illite, and therefore the age of the fault rocks. The age of neoformed 1M4 illite in the gouge (diamonds) is 62.7 ± 2 Ma, which is statistically indistinguishable from the age of neoformed I–S in the damage zone (squares) of 60.1 ± 2 Ma. This age reflects the most recent period of activity along this exposure of the Moab Fault, and indicates that the mineral assemblages and fabrics in the Moab Fault zone are not the result of recent alteration.

The degree of phyllosilicate preferred orientation in
these fault rocks decreases significantly from that in undeformed protolith. A potential mineralogical permeability contrast between I–S-bearing rocks in the damage zone and more illitic rocks in the gouge provides a mechanism by which fluids could be isolated in the fault core from fluids in the protolith.

Acknowledgements

This study was funded through NSF grants EAR-9980459 and EAR-0230055 and grants from the Scott M. Turner Fund at the University of Michigan. TEM and SEM work was completed at the University of Michigan Electron Microbeam Analysis Laboratory and Ar dating at the University of Michigan Radiogenic Isotope Geochemistry Laboratory. We thank Chris Hall for his assistance with Ar dating. We thank Laurence Warr for assistance with electron microscopy and discussion, Tracy Kolb for her assistance with sample preparation, and Kevin Thomas for assistance with collection of samples in the field. Peter Vrolijk and David Pevear provided early guidance with field sampling and clay analysis. Reviews by Jonathan Caine and Martha Gerdes clarified our presentation and improved an earlier version of the manuscript. Thoughtful reviews by Nick Hayman and Darrel Cowan of the final manuscript are appreciated.

References

