## Late Mesoproterozoic Deformation of SW Amazonia (Rondônia, Brazil): Geochronological and Structural Evidence for Collision with Southern Laurentia

E. Tohver,<sup>1</sup> B. A. van der Pluijm, J. E. Scandolâra,<sup>2,3</sup> and E. J. Essene

Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109-1063, U.S.A. (e-mail: etohver@umich.edu)

### ABSTRACT

Proposed assembly of the Rodinia supercontinent in the late Mesoproterozoic involved the collision of the Amazon craton with some portion of the southern or eastern margin of cratonic North America. Previously reported paleomagnetic data from the SW Amazon craton suggest a paleogeographic link between "Grenvillian" deformation of the SW Amazon craton and late Mesoproterozoic tectonometamorphism in southern Laurentia. A structural, geochronological, and petrological investigation of the western Amazon basement rocks (Rondônia, Brazil) was carried out in order to document evidence of a Grenvillian collision connecting the Amazon to Laurentia. Integration of <sup>40</sup>Ar/ <sup>39</sup>Ar data and feldspar thermometry data from regionally extensive strike-slip mylonitic shear zones (Ji-Paraná shear zone network) indicates that deformation took place at 450°-550°C between 1.18 and 1.15 Ga. An older, ca. 1.35-Ga event found exclusively in less-deformed basement rocks is interpreted as recording cooling from an earlier metamorphic episode (650°-800°C indicated by feldspar thermometry) unrelated to the Grenville collision. The style of deformation in the SW Amazon craton contrasts with that observed in southern Laurentia, where extensive crustal thickening accommodated by deep-seated thrust sheets resulted in widespread thermal resetting of isotopic systems during exhumation and postorogenic cooling. In contrast, the predominantly strike-slip activity observed in the Amazon resulted in age resetting through strain-induced recrystallization, not regional-scale thermal resetting. Consequently, the ages recorded by hornblende in the SW Amazon craton are slightly older than the cooling ages preserved in southern Laurentia. Differences in structural style and geochronological record are interpreted as indicative of an exhumed, asymmetric crustal structure similar to that of modern orogens.

Online enhancements: appendixes.

### Introduction

The North American Grenville Province, which stretches from the Llano Uplift area of central Texas to northeastern Labrador, has long been recognized as an exhumed zone of middle to deep crustal orogenesis based on structural geology, the resetting of isotopic age systems, and high *PT* conditions reflective of middle to deep crustal equilibration for rocks now exposed at the surface (Easton

Manuscript received February 3, 2004; accepted November 19, 2004.

<sup>1</sup> Author for correspondence; present address: Instituto de Geociências, Universidade de São Paulo, Rua do Logo 562, Cidade Universitária, 05508-080 São Paulo, SP, Brazil.

<sup>2</sup> Companhia de Pesquisa de Recursos Minerais, Avenida Lauro Sodré 2561, Porto Velho, RO, Brazil 78904-300.

<sup>3</sup> Present address: Instituto de Geociências, Universidade de Brasília, 70910-900 Brasília, DF, Brazil.

1992; Mezger et al. 1993; Rivers 1997; Davidson 1998; Mosher 1998). Seismic profiles of the Canadian portion of this belt highlight the presence of shallowly dipping structures, interpreted as imbricated thrust sheets emplaced during a major collisional event (Rivers et al. 1989; White et al. 1994). The Rodinia hypothesis builds on these observations to suggest that the Grenville orogeny records the amalgamation of a supercontinent through the collision of Laurentia with other cratons, with the Baltic, Amazon, and Kalahari cratons advanced as the most likely candidates (Hoffman 1991; Dalziel et al. 2000; Tohver et al. 2002).

Evidence for the respective roles of Baltica, the Kalahari, and Amazonia within the Rodinia framework is of variable quality. The case for Baltica

<sup>[</sup>The Journal of Geology, 2005, volume 113, p. 309-323] © 2005 by The University of Chicago. All rights reserved. 0022-1376/2005/11303-0004\$15.00

seems the most compelling on the basis of both paleomagnetic evidence and geological observations. The paleomagnetically derived position of Baltica relative to Laurentia is constrained by matching apparent polar wander paths (APWPs) for the period 1.05–0.95 Ga for both continents (Piper 1987; Weil et al. 1998) or by comparing individual poles from both cratons (Hartz and Torsvik 2002). Both analyses point to a location for Baltica adjacent to the northeasternmost Grenville Province, although the orientation of Baltica differs in the respective reconstructions. Geological correlations have also been cited in support of the northeastern position for Baltica near either Labrador or Greenland (Gower et al. 1990; Hoffman 1991; Cawood et al. 2001).

The paleogeographic position of Amazonia is constrained by a paleomagnetic pole for the earliest portion (ca. 1.2 Ga) of the Grenville interval (Tohver et al. 2002). By comparing the latitude and orientation of the Amazon craton with the paleogeographic drift of Laurentia for the 1.35-1.15-Ga interval, Tohver et al. (2002) proposed a tectonic link between Amazonia and southern Laurentia at ca. 1.2 Ga. The possibility of a collision between the two cratons at this time is compatible with known constraints on the timing of major deformation in the Llano region, which occurred between 1.24 and 1.10 Ga (Walker 1992). However, given the lack of other paleomagnetic data from Amazonia for the remainder of the Grenville interval, there is no constraint on the relative paleolongitude of these two cratons. Thus, for now, the assessment of the proposed Amazon-Llano collision must be made on the basis of geological evidence for a collision from both cratons. Although isotopic similarities between the SE Appalachian basement and the SW Amazonian craton support a paleogeographic link between these two cratons at a later interval (ca. 1.0 Ga, according to Loewy et al. 2003; 1145–1075 Ma according to Tohver et al. 2004a), the "Grenvillian" deformation history of the SW Amazon presumably caused by the collision has not been documented, in contrast with the well-studied Grenvillian history of southern Laurentia (e.g., Bristol and Mosher 1989; Walker 1992; Roback 1996; Carlson and Schwarze 1997; Mosher 1998; Grimes and Mosher 2003; Grimes and Copeland 2004).

The proposed collision between Amazonia and southern Laurentia contrasts with an earlier proposal that identified the Kalahari craton as the missing "southern continent" (Dalziel et al. 2000). However, the case for the Kalahari is weakened by direct comparison of paleogeography through paleomagnetism as well as disparities in the geological record from the Grenvillian belts of both cratons. Comparison of the APWPs from the Kalahari and Laurentian cratons demonstrates that a common geological history is plausible only for the period after 1.06 Ga (Powell et al. 2001). This analysis reveals a latitudinal separation of  $30^{\circ} \pm 14^{\circ}$  for times as late as 1.11 Ga, which is difficult to reconcile with the 1.24-1.10 Ga collisional scenario documented for southern Laurentia (Walker 1992). New, high-precision geochronological constraints on the age of paleomagnetic reversals recorded in the Umkondo Province of the Kalahari craton reported by Hanson et al. (2004) allow detailed correlation with Laurentian paleopoles known to be of the same geomagnetic polarity. In addition to confirming the ca. 3000-km distance between the Kalahari and southern Laurentia, the new constraints indicate a 90° misorientation between the Grenville Province of Laurentia and the Grenvillian Namagua-Natal belt of the Kalahari craton, convincing proof that these belts cannot have originated from a collision between their respective cratons. Geological observations also reveal age discrepancies between deformation of southern Laurentia and Grenvillian deformation of the Kalahari craton. The timing of peak metamorphism varies somewhat in the Namagua-Natal belt, with U-Pb zircon ages from Namagua (westernmost extent) yielding ages of 1.07-1.13 Ga, slightly older than the 1.06-Ga age reported from the easternmost, Natal section of the belt (Jacobs et al. 1993). The age of metamorphic rims on zircon from highgrade rocks of East Antarctica, once contiguous to the eastern end of the Namagua-Natal belt, was established as 1.09-1.05 Ga on the basis of SHRIMP analysis of zircon (Jacobs et al. 2003). These combined constraints suggest that the collisional event responsible for high-grade metamorphism in the Kalahari craton is considerably younger than the similar high-grade deformation of southern Laurentia at 1.24-1.10 Ga (Walker 1992). At the time of Kalahari peak metamorphism, deformation in southern Laurentia was limited to late strike-slip motion and thrusting during a greenschist/lower amphibolite facies event in west Texas (Soegaard and Callahan 1994; Bickford et al. 2000; Grimes and Copeland 2004).

The proposed position of the Amazon craton against the southernmost extent of the North American Grenville Province relies on a reconstruction of the tectonometamorphic history of the restored "greater" Grenville mobile belt that marks the collision between the two cratons. In this article, we present new geochronological, petrologi-

cal, and structural observations of the late Mesoproterozoic deformation of the SW Amazon craton. Geochronological data from exhumed mountain belts may reflect different aspects of orogenic history: the age of crystallization from magmatic or peak metamorphic conditions, the age of cooling through a mineral's blocking temperature for the retention of radiogenic daughter products, and the age of deformation in cases where strain-induced recrystallization took place at or above peak metamorphic temperatures. Thus, the geological significance of geochronological data depends on the regional pressure-temperature-time and deformational history, precluding a simple comparison of numerical age data from different portions of a belt. With this caveat, we conclude that the Grenvillian ages reported from the Amazon are true deformation ages, in contrast with ages reported from southern Laurentia that probably record cooling from peak metamorphic conditions or some other portion of the postcollisional history of exhumation. The collision between the Amazon and southern Laurentia is inferred to have created an asymmetric orogenic structure, accommodated by widespread crustal thickening on one continent (Laurentia), while the other continent (Amazonia) was marked by pervasive strike-slip faulting.

#### SW Amazon Regional Geology

Two cratonic masses comprise the Amazon craton along its SW margin: basement rocks of the Amazon craton itself and a subcontinental-sized block known as the Paragua craton (Litherland et al. 1989; Tassinari et al. 2000). Suturing of these cratons is recorded by the 1.0-Ga Nova Brasilândia metasedimentary belt (fig. 1), which was accompanied by high-grade thrusting and transpressional tectonics (Tohver et al. 2004b). North of this belt, the granitoid basement rocks of the SW Amazon craton record a protracted history of plutonism and metamorphism throughout the Mesoproterozoic (Bettencourt et al. 1999; Payolla et al. 2002). The Roosevelt Province, a 1.55-Ga domain within the SW Amazon craton, is dominated by low-grade, undeformed volcanosedimentary rocks, thus forming a northeastern limit to high-grade basement reactivation. To the north of the Nova Brasilândia metasedimentary belt, the polyphase nature of the Amazon basement rocks prevents the recognition of clear boundaries on the sole basis of different age provinces (Bettencourt et al. 1999). Major geological contacts are the result of tectonic juxtaposition, which has obscured many of the original intrusive relations (Tohver et al. 2005).

The youngest ductile deformation that affected these rocks is manifested in a wide network of amphibolite-grade shear zones, mapped as the Ji-Paraná shear zone (JPSZ) network by Scandolâra et al. (1999). The JPSZ is recognizable on regional RADARSAT images as large-scale lineaments that extend over hundreds of kilometers and transect the Amazon basement. Two trends mark the JPSZ along its full extent, a strongly deformed SE portion marked by NNW trends and a less-deformed NW sector marked by EW trends. The nature of the interaction (coeval deformation or overprinting) between the two trends is presently unclear, given the kinematically complex zone where these two zones intersect. At the outcrop scale, the JPSZ consists of narrow (10–100 m), subvertical, mylonitic zones with subhorizontal lineations that crosscut all preexisting rock fabrics. Rock foliations parallel to these mylonitic shear zones can be traced into the neighboring country rocks for variable distances ranging from kilometers in the NNWtrending portion in the southeast (fig. 2a) to centimeters in the E-W-trending portion of the network in the northwest (fig. 2b), suggesting a strain gradient that tapers off to the NW. Mylonitic fabrics are superimposed on a quartzofeldspathic matrix, resulting in asymmetric porphyroclasts (both  $\sigma$  and  $\delta$  types), the generation of drag folds, and S-C and C-C' fabrics that consistently record a sinistral sense of shear (fig. 2a, 2b). Deformation associated with the JPSZ has affected an area up to 200 km wide. This deformation is highly heterogeneous, marked by mylonitic zones with clearly asymmetric fabrics interspersed with less-deformed blocks that are marked by weaker, more symmetric fabrics (fig. 2c). On a regional level, the blocks in the SE portion of the JPSZ between the NNW-trending mylonitic zones have a sigmoidal, strike-slip duplex geometry within the larger shear zone structure (fig. 1). This work is based entirely on work in the SE portion where NNW trends predominate.

### Feldspar Thermometry

Because the dominant lithology of the Amazon basement is a quartzofeldspathic granitoid, foliations commonly are formed through the deformation of feldspar and quartz. There is a correspondence between the degree of foliation development at the outcrop scale and microstructural textures at the microscopic scale, both of which reflect the degree of strain suffered. K-feldspar grains are characterized by exsolution textures (fig. 3*a*) that range from perthitic grains (lamellae >10  $\mu$ m) with idiomorphic habits in undeformed igneous rocks in the center of duplex



**Figure 1.** Bottom inset, Location map of study area within South American continent, showing relation to general outline of Amazon craton outlined in black. The E-W trace of the Nova Brasilândia belt, a late Mesoproterozoic suture line between the Amazon craton (AC) and Paragua craton (PC), is shown as a dark gray line. Top inset, General geometry of SW Amazon craton showing the deformed basement rocks of Ji-Parana shear zone (JPSZ) with respect to younger (ca. 1.1–1.0 Ga) Nova Brasilândia, Aguapeí, and Sunsas belts. Main location map in Rondônia shows regional trend and large-scale duplex geometry of the NNW-trending JPSZ network superimposed on a simplified geological map adapted from work by Scandolâra et al. (1999); E-trending shear zones, depicted with gray lines, are of uncertain age in relation to JPSZ.  $^{40}$ Ar/ $^{39}$ Ar ages from hornblende are shown for samples in shear zones and within the undeformed blocks of JPSZ. Numbers are argon plateau ages (total gas ages denoted with asterisks).

blocks and augen gneisses with foliations discordant to the regional trend. Microperthitic feldspars (lamellae <10  $\mu$ m) are found in banded gneisses with foliations that are parallel to the shear zone boundaries. Coexisting plagioclase grains, preserving rare antiperthitic textures, are found in both undeformed and deformed rocks (e.g., Kroll et al. 1993). A clear correlation exists between the coarseness of the exsolved lamellae in each sample and the overall degree of foliation development resulting from deformation. In contrast with the exsolved textures that characterize weakly foliated granitoids and au-



**Figure 2.** Outcrop photographs looking down at Rondônia basement rocks with north indicated by arrow. *a*, Outcrop photograph of protomylonite from Ji-Parana shear zone. Small drag folds (*below coin*) and C-C' fabric indicate a sinistral shear sense. Coin on outcrop face is ca. 2.5 cm in diameter. *b*, Outcrop photograph showing the development of sinistral sense shear zone that crosscuts previous rock fabric in NW portion of state, where EW trends predominate. *c*, Weakly developed rock fabric from less deformed interior of shear zone duplex.



**Figure 3.** *a*, Backscattered electron image of typical perthitic alkali feldspar grain with schematic representation of analytical procedures. Rectangle depicts open-beam analyses whereas circles and crosses represent typical point analyses. *b*, Feldspar ternary diagram with isothermal solvus locations for 600 MPa plotted from work by Lindsley and Nekvasil (1989) based on *P* estimates in work by Payolla et al. (2002). Curved arrow shows the evolution of lamellar compositions through exsolution gen gneisses with foliations discordant to regional trends, shear zone rocks are characterized by the development of a fine-grained, recrystallized matrix of homogeneous feldspar grains. Porphyroclastic feldspars in these mylonitic and protomylonitic samples are characterized by a core-and-mantle structure, with exsolution textures preserved only within the interior of relict clasts. The well-developed 120° triple-point grain boundaries in the mantling grains suggest an equilibrium texture generated by dynamic recrystallization. In deformed samples, the foliation is formed partially by newly formed biotite and hornblende.

Feldspar solvus thermometry can be used to determine the temperature at which coexisting pairs of plagioclase and K-feldspar were in equilibrium (Bohlen and Essene 1977). By assuming that the mineral pairs were in equilibrium at their formation, the compositions of the coexisting pairs can be used to locate the feldspar solvus and thus reconstruct the temperature aspect of the regional cooling (temperature-time) history. In general, temperatures recovered in this way will reflect one of three scenarios: (1) the original igneous emplacement, (2) static recrystallization during metamorphism, or (3) straininduced recrystallization during deformation. The essential difference among these three cases lies in the principal role of thermal energy for the first two scenarios versus strain energy for the third scenario. Deformation enhances the homogenization and reequilibration of feldspar pairs through subgrain development, recrystallization, and the migration of lamellae out of the host grain (granulation). Thus, textural evidence is critical to determining the significance of the temperature calculations derived from feldspar compositions.

in a cooling, static regime. Compositions A1 and P1 are in equilibrium with each other, but cooling to 500°C causes the exsolution of lamellae of composition L1 and drives the host composition to A2. c, Representative analyses from a perthitic feldspar grain in an undeformed rock demonstrating migration of lamellar compositions (crosses) far from the tie-line connecting reintegrated, original compositions (open circles = point analyses of exsolved host K-feldspar; solid circles = compositions from reintegration of point analyses of K-feldspar; *filled triangles* = coexistingplagioclase feldspar). d, Representative analyses for a banded gneiss sample outside shear zone. Microperthitic feldspar textures indicate that a shorter cooling history after deformation has curtailed the migratory effect of exsolution processes on lamellar compositions.

In a slowly cooling terrain undergoing no deformation (case 1), feldspar pairs maintain equilibrium across a widening solvus through mutual exsolution. The uninterrupted growth of exsolution lamellae in K-feldspar results in coarse, perthitic textures (Kroll et al. 1993; Voll et al. 1994). Under these conditions, reintegration of exsolved, unrecrystallized feldspar pairs should recover the original, igneous compositions, thus determining the temperature of emplacement. In the case where recrystallization occurs after emplacement (cases 2 and 3), rock textures provide information regarding the deformation/cooling history. In the case where  $T_{\text{recrystallization}} = T_{\text{metamorphism}}$ , continued cooling after recrystallization results in the exsolution, producing a microperthitic feldspar texture within a polygonal, unfoliated fabric (case 2) or a foliated, strain-induced fabric (case 3). Where exsolution has taken place, the temperature of recrystallization can be determined from the original compositions at equilibrium prior to exsolution, discussed in "Results." In the case where minimal cooling occurs after deformation (i.e.,  $T_{\rm metamorphism} >$  $T_{\text{recrystallization}}$ ), newly formed grains in the rock foliation will retain a homogeneous composition with no exsolution development. In this scenario, the compositions of the coexisting feldspar pairs are unchanged and directly reflect the temperature of equilibration through recrystallization.

### Results

Reintegrated feldspar compositions are given in table 1 with examples of analytical results from single samples (fig. 3) and reintegrated results from all samples (fig. 4) plotted on feldspar ternary diagrams. Two reintegration techniques based on electron microprobe analyses are described in appendix A in the online edition of the *Journal of Geology* and also available from the Data Depository in the *Journal of Geology* office upon request. In general, compositional differences between host and lamella compositions show a clear variance with rock texture. The schematic diagram in figure 3billustrates the general case where protracted cooling leads to extensive exsolution and the development of multiple generations of lamellae, consequently leading to a wide range of lamellar compositions. This general case applies to undeformed to weakly foliated samples with coarse perthitic textures (fig. 3c), where the wide range in lamellar compositions off the tie line connecting the coexisting, reintegrated feldspar compositions suggests extended cooling under static conditions (fig. 3c). Less-deformed samples tend to record the most highly discordant temperatures, generally with  $T_{An} \gg T_{Or} > T_{Ab}$ . Samples with gneissic foliation and microperthitic textures have lamellar compositions that plot in a discrete area closer to the K-feldspar-plagioclase tie line (fig. 3d), probably reflecting the relatively short duration of time after recrystallization over which exsolution and intercrystalline exchange processes were active. In addition, these gneissic samples record temperatures with a lower degree of discordance between the three thermometers (typically  $T_{An} > T_{Or} \ge T_{Ab}$ ) than that recorded by igneous-textured, coarsely perthitic samples. Reintegrated compositions from all samples are plotted in figure 4. Feldspar pairs from perthitic samples (i.e., both gneissic and igneous) give temperatures in the range of 650°–800°C (fig. 4). In contrast, homogeneous grains from recrystallized mantles in protomylonites and the matrix of mylonitic samples record the lowest temperatures (450°–550°C) with good agreement among the three thermometers  $(T_{An} \approx T_{Or} \approx T_{Ab})$ .

### <sup>40</sup>Ar/<sup>39</sup>Ar Geochronology

Hornblende grains were separated from 11 Amazon basement samples (both shear zones and the interior of duplex blocks) for argon isotope analysis. A table with outcrop descriptions, mineral assemblages, and GPS locations is included in appendix form, together with argon isotope data from each sample, and a description of argon analytical techniques (app. B in the online edition of the Journal of Geology and also available from the Data Depository in the Journal of Geology office upon request). Two sets of hornblende ages are observed, an older set of clustering at ca. 1.35 Ga and a younger set of ages in the 1.18–1.15-Ga range (fig. 1). A close correspondence is observed between the <sup>40</sup>Ar/<sup>39</sup>Ar ages and the structural setting of the sample. Samples from the duplex interiors record older ages, similar to ages preserved in U-Pb analysis of monazite as well as those from garnet-whole rock Sm-Nd isochrons from rocks to the north of this study area (Payolla et al. 2002; Tohver et al. 2005). Mylonitic samples invariably record argon ages that are reset to the 1.18–1.15-Ga range. The different age ranges correspond to the feldspar thermometry results, with samples that yield temperatures >600°C, preserving ages in the older 1.35-Ga range. In contrast, reset ages in the 1.18–1.15-Ga range are found in mylonitic and protomylonitic shear zone samples, where feldspar thermometry records temperatures in the 450°-550°C range. The younger set of hornblende ages are regarded as marking the timing of deformation-induced recrystallization be-

|                                                                                        | 103                                                                             | 3*                                                                            | 107                                                                            | *                                                                              | 109                                                                            | )*                                                                             | 110                                                                           | *                                                                              | 11                                                                             | 2*                                                                             | 113                                                                            | ;*                                                                             | 117                                                                             | 7*                                                                             | 12                                                                              | 0*                                                                            |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Sample                                                                                 | Plag                                                                            | Kspar                                                                         | Plag                                                                           | Kspar                                                                          | Plag                                                                           | Kspar                                                                          | Plag                                                                          | Kspar                                                                          | Plag                                                                           | Kspar                                                                          | Plag                                                                           | Kspar                                                                          | Plag                                                                            | Kspar                                                                          | Plag                                                                            | Kspar                                                                         |
| $\begin{array}{c} Na_2O\\ CaO\\ K_2O\\ Al_2O_3\\ SiO_2\\ Fe_2O_3 \end{array}$          | 8.41                                                                            | 1.10                                                                          | 8.31                                                                           | 2.60                                                                           | 7.19                                                                           | 1.56                                                                           | 8.35                                                                          | 2.31                                                                           | 8.16                                                                           | 2.02                                                                           | 7.87                                                                           | 1.91                                                                           | 9.61                                                                            | 3.12                                                                           | 7.68                                                                            | 1.60                                                                          |
|                                                                                        | 5.69                                                                            | .12                                                                           | 5.57                                                                           | .62                                                                            | 7.42                                                                           | .36                                                                            | 5.83                                                                          | .50                                                                            | 5.84                                                                           | .30                                                                            | 6.57                                                                           | .33                                                                            | 3.66                                                                            | .35                                                                            | 6.89                                                                            | .16                                                                           |
|                                                                                        | .18                                                                             | 14.85                                                                         | .20                                                                            | 12.84                                                                          | .17                                                                            | 14.25                                                                          | .16                                                                           | 13.25                                                                          | .45                                                                            | 13.76                                                                          | .44                                                                            | 13.85                                                                          | .20                                                                             | 12.19                                                                          | .22                                                                             | 14.41                                                                         |
|                                                                                        | 24.45                                                                           | 18.67                                                                         | 24.57                                                                          | 19.56                                                                          | 26.36                                                                          | 19.32                                                                          | 24.69                                                                         | 19.47                                                                          | 24.09                                                                          | 18.61                                                                          | 25.33                                                                          | 19.15                                                                          | 22.95                                                                           | 19.34                                                                          | 25.90                                                                           | 19.09                                                                         |
|                                                                                        | 61.40                                                                           | 64.56                                                                         | 60.63                                                                          | 63.89                                                                          | 57.96                                                                          | 63.93                                                                          | 59.45                                                                         | 62.70                                                                          | 59.99                                                                          | 63.75                                                                          | 58.65                                                                          | 64.66                                                                          | 64.00                                                                           | 64.85                                                                          | 60.15                                                                           | 64.29                                                                         |
|                                                                                        | .02                                                                             | .05                                                                           | .05                                                                            | .01                                                                            | .05                                                                            | .02                                                                            | .07                                                                           | .13                                                                            | .34                                                                            | .08                                                                            | .08                                                                            | .04                                                                            | .07                                                                             | .10                                                                            | .07                                                                             | .11                                                                           |
| Total<br>Na<br>Ca<br>K<br>Al<br>Si<br>Fe<br>X (An)<br>X (Ab)<br>X (Or)<br>Un divite di | 100.15<br>.722<br>.270<br>.010<br>1.277<br>2.720<br>.001<br>27.0<br>72.0<br>1.0 | 99.34<br>.098<br>.006<br>.880<br>1.020<br>2.995<br>.002<br>.6<br>10.0<br>89.5 | 99.34<br>.720<br>.266<br>.011<br>1.293<br>2.708<br>.002<br>26.7<br>72.1<br>1.2 | 99.52<br>.229<br>.030<br>.758<br>1.059<br>2.939<br>.000<br>3.0<br>22.7<br>74.6 | 99.16<br>.627<br>.358<br>.010<br>1.397<br>2.607<br>.002<br>36.0<br>63.0<br>1.0 | 99.44<br>.139<br>.017<br>.842<br>1.052<br>2.955<br>.001<br>1.7<br>13.9<br>84.5 | 98.56<br>.728<br>.281<br>.009<br>1.308<br>2.672<br>.002<br>27.6<br>71.5<br>.9 | 98.36<br>.207<br>.024<br>.788<br>1.067<br>2.916<br>.005<br>2.4<br>20.3<br>77.4 | 98.87<br>.711<br>.281<br>.027<br>1.276<br>2.696<br>.011<br>27.6<br>69.8<br>2.6 | 98.52<br>.182<br>.015<br>.818<br>1.020<br>2.968<br>.003<br>1.4<br>17.9<br>80.7 | 98.93<br>.685<br>.316<br>.025<br>1.339<br>2.632<br>.003<br>30.8<br>66.8<br>2.5 | 99.94<br>.169<br>.016<br>.811<br>1.035<br>2.967<br>.001<br>1.5<br>17.0<br>81.5 | 100.48<br>.818<br>.172<br>.011<br>1.187<br>2.809<br>.002<br>17.2<br>81.7<br>1.1 | 99.95<br>.274<br>.017<br>.714<br>1.041<br>2.962<br>.003<br>1.7<br>27.4<br>71.1 | 100.91<br>.657<br>.326<br>.012<br>1.347<br>2.655<br>.002<br>32.7<br>66.0<br>1.2 | 99.65<br>.142<br>.008<br>.847<br>1.037<br>2.962<br>.004<br>.8<br>14.3<br>84.9 |
| T(Ab)                                                                                  | 48                                                                              | 86                                                                            | 63                                                                             | 57                                                                             | 57                                                                             | 3                                                                              | 622                                                                           | 2                                                                              | 61                                                                             | 20                                                                             | 61                                                                             | 8                                                                              | 64                                                                              | 17                                                                             | 58                                                                              | 83                                                                            |
| T(Or)                                                                                  | 46                                                                              | 52                                                                            | 48                                                                             | 58                                                                             | 49                                                                             | 4                                                                              | 464                                                                           | 4                                                                              | 5                                                                              | 79                                                                             | 58                                                                             | 6                                                                              | 44                                                                              | 18                                                                             | 50                                                                              | 02                                                                            |
| T(An)                                                                                  | 61                                                                              | .8                                                                            | 94                                                                             | 0                                                                              | 76                                                                             | 2                                                                              | 873                                                                           | 3                                                                              | 71                                                                             | 25                                                                             | 74                                                                             | 5                                                                              | 83                                                                              | 34                                                                             | 61                                                                              | 05                                                                            |
| T(Ab)                                                                                  | 57                                                                              | 76                                                                            | 67                                                                             | 77                                                                             | 63                                                                             | 1                                                                              | 661                                                                           | 1                                                                              | 6                                                                              | 73                                                                             | 68                                                                             | 3                                                                              | 68                                                                              | 30                                                                             | 59                                                                              | 99                                                                            |
| T(Or)                                                                                  | 57                                                                              | 76                                                                            | 60                                                                             | 18                                                                             | 63                                                                             | 1                                                                              | 600                                                                           | )                                                                              | 6                                                                              | 68                                                                             | 68                                                                             | 0                                                                              | 50                                                                              | 58                                                                             | 59                                                                              | 99                                                                            |
| T(An)                                                                                  | 57                                                                              | 76                                                                            | 89                                                                             | 19                                                                             | 73                                                                             | 3                                                                              | 840                                                                           | )                                                                              | 6                                                                              | 89                                                                             | 70                                                                             | 3                                                                              | 78                                                                              | 36                                                                             | 59                                                                              | 99                                                                            |
|                                                                                        | 123                                                                             | 3*                                                                            | 122                                                                            | 2 r                                                                            | 104                                                                            | 1 r                                                                            | 105                                                                           | r                                                                              | 11                                                                             | 0 r                                                                            | 113                                                                            | 3 r                                                                            | 11:                                                                             | 5 r                                                                            | 12                                                                              | 5 r                                                                           |
|                                                                                        | Plag                                                                            | Kspar                                                                         | Plag                                                                           | Kspar                                                                          | Plag                                                                           | Kspar                                                                          | Plag                                                                          | Kspar                                                                          | Plag                                                                           | Kspar                                                                          | Plag                                                                           | Kspar                                                                          | Plag                                                                            | Kspar                                                                          | Plag                                                                            | Kspar                                                                         |
| $\begin{array}{c} Na_2O\\ CaO\\ K_2O\\ Al_2O_3\\ SiO_2\\ Fe_2O_3 \end{array}$          | 7.14                                                                            | 2.28                                                                          | 8.30                                                                           | 1.30                                                                           | 8.64                                                                           | 1.18                                                                           | 8.41                                                                          | .67                                                                            | 8.60                                                                           | 1.09                                                                           | 7.68                                                                           | 1.37                                                                           | 8.79                                                                            | .93                                                                            | 10.03                                                                           | .44                                                                           |
|                                                                                        | 7.45                                                                            | .27                                                                           | 5.49                                                                           | .09                                                                            | 5.48                                                                           | .01                                                                            | 5.40                                                                          | .03                                                                            | 5.42                                                                           | .01                                                                            | 6.89                                                                           | .12                                                                            | 4.88                                                                            | .01                                                                            | 2.78                                                                            | .00                                                                           |
|                                                                                        | .35                                                                             | 13.23                                                                         | .57                                                                            | 13.76                                                                          | .12                                                                            | 15.08                                                                          | .16                                                                           | 15.32                                                                          | .11                                                                            | 15.35                                                                          | .19                                                                            | 14.59                                                                          | .17                                                                             | 15.28                                                                          | .50                                                                             | 17.00                                                                         |
|                                                                                        | 26.02                                                                           | 18.94                                                                         | 24.35                                                                          | 18.62                                                                          | 24.02                                                                          | 18.52                                                                          | 23.87                                                                         | 18.25                                                                          | 23.85                                                                          | 18.43                                                                          | 25.76                                                                          | 19.02                                                                          | 23.30                                                                           | 18.03                                                                          | 21.91                                                                           | 18.40                                                                         |
|                                                                                        | 58.58                                                                           | 63.98                                                                         | 62.62                                                                          | 64.30                                                                          | 61.91                                                                          | 64.30                                                                          | 61.16                                                                         | 65.16                                                                          | 61.80                                                                          | 64.54                                                                          | 59.62                                                                          | 65.10                                                                          | 62.03                                                                           | 64.73                                                                          | 65.99                                                                           | 64.36                                                                         |
|                                                                                        | .14                                                                             | .13                                                                           | .09                                                                            | .05                                                                            | .13                                                                            | .02                                                                            | .10                                                                           | .08                                                                            | .01                                                                            | .12                                                                            | .06                                                                            | .04                                                                            | .05                                                                             | .04                                                                            | .02                                                                             | .03                                                                           |
| Total                                                                                  | 99.68                                                                           | 98.83                                                                         | 101.43                                                                         | 98.11                                                                          | 100.30                                                                         | 99.11                                                                          | 99.1058                                                                       | 99.51                                                                          | 99.79                                                                          | 99.54                                                                          | 100.21                                                                         | 100.25                                                                         | 99.23                                                                           | 99.01                                                                          | 101.21                                                                          | $100.23 \\ .04 \\ .00 \\ 1.00 \\ 1.00 \\ 2.96 \\ .00 \\ .0 \\ 3.8 \\ 96.2$    |
| Na                                                                                     | .620                                                                            | .204                                                                          | .715                                                                           | .117                                                                           | .740                                                                           | .11                                                                            | .730                                                                          | .06                                                                            | .74                                                                            | .10                                                                            | .661                                                                           | .122                                                                           | .761                                                                            | .08                                                                            | .85                                                                             |                                                                               |
| Ca                                                                                     | .358                                                                            | .013                                                                          | .262                                                                           | .004                                                                           | .260                                                                           | .001                                                                           | .259                                                                          | .001                                                                           | .258                                                                           | .001                                                                           | .328                                                                           | .006                                                                           | .233                                                                            | .001                                                                           | .26                                                                             |                                                                               |
| K                                                                                      | .020                                                                            | .784                                                                          | .033                                                                           | .826                                                                           | .007                                                                           | .894                                                                           | .009                                                                          | .908                                                                           | .006                                                                           | .906                                                                           | .011                                                                           | .855                                                                           | .009                                                                            | .908                                                                           | .03                                                                             |                                                                               |
| Al                                                                                     | 1.374                                                                           | 1.034                                                                         | 1.277                                                                          | 1.031                                                                          | 1.251                                                                          | 1.013                                                                          | 1.259                                                                         | .999                                                                           | 1.249                                                                          | 1.005                                                                          | 1.349                                                                          | 1.028                                                                          | 1.226                                                                           | .990                                                                           | 1.12                                                                            |                                                                               |
| Si                                                                                     | 2.624                                                                           | 2.965                                                                         | 2.788                                                                          | 3.022                                                                          | 2.737                                                                          | 2.986                                                                          | 2.74                                                                          | 3.028                                                                          | 2.746                                                                          | 2.987                                                                          | 2.649                                                                          | 2.987                                                                          | 2.769                                                                           | 3.016                                                                          | 2.87                                                                            |                                                                               |
| Fe                                                                                     | .005                                                                            | .005                                                                          | .003                                                                           | .002                                                                           | .00                                                                            | .001                                                                           | .00332                                                                        | .003                                                                           | .000                                                                           | .004                                                                           | .002                                                                           | .002                                                                           | .00                                                                             | .001                                                                           | .00                                                                             |                                                                               |
| X (An)                                                                                 | 35.9                                                                            | 1.3                                                                           | 26.3                                                                           | .4                                                                             | 25.8                                                                           | .1                                                                             | 25.9                                                                          | .1                                                                             | 25.7                                                                           | .1                                                                             | 32.8                                                                           | .6                                                                             | 23.3                                                                            | .1                                                                             | 22.7                                                                            |                                                                               |
| X (Ab)                                                                                 | 62.1                                                                            | 20.3                                                                          | 71.8                                                                           | 12.3                                                                           | 73.5                                                                           | 10.6                                                                           | 73.1                                                                          | 6.2                                                                            | 73.7                                                                           | 9.7                                                                            | 66.1                                                                           | 12.4                                                                           | 75.8                                                                            | 8.5                                                                            | 74.6                                                                            |                                                                               |
| X (Or)                                                                                 | 2.0                                                                             | 78.4                                                                          | 3.5                                                                            | 87.3                                                                           | .7                                                                             | 89.4                                                                           | .9                                                                            | 93.6                                                                           | .6                                                                             | 90.2                                                                           | 1.1                                                                            | 87.0                                                                           | .9                                                                              | 91.4                                                                           | 2.7                                                                             |                                                                               |
| T(Ab)                                                                                  | 67                                                                              | 76                                                                            | 55                                                                             | i3                                                                             | 46                                                                             | 8                                                                              | 452                                                                           | 2                                                                              | 43                                                                             | 53                                                                             | 55                                                                             | 1                                                                              | 42                                                                              | 24                                                                             | 39                                                                              | 97                                                                            |
| T(Or)                                                                                  | 57                                                                              | 77                                                                            | 55                                                                             | i3                                                                             | 36                                                                             | 9                                                                              | 450                                                                           | 5                                                                              | 3                                                                              | 74                                                                             | 49                                                                             | 1                                                                              | 38                                                                              | 38                                                                             | 39                                                                              | 98                                                                            |
| T(An)                                                                                  | 64                                                                              | 16                                                                            | 55                                                                             | i3                                                                             | 36                                                                             | 9                                                                              | 450                                                                           | 5                                                                              | 3                                                                              | 74                                                                             | 56                                                                             | 8                                                                              | 38                                                                              | 38                                                                             | 39                                                                              | 98                                                                            |
| T(Ab)                                                                                  | 65                                                                              | 59                                                                            | 55                                                                             | 3                                                                              | 52                                                                             | 3                                                                              | 455                                                                           | 5                                                                              | 50                                                                             | 09                                                                             | 56                                                                             | 3                                                                              | 39                                                                              | 96                                                                             | 39                                                                              | 98                                                                            |
| T(Or)                                                                                  | 65                                                                              | 59                                                                            | 55                                                                             | 3                                                                              | 49                                                                             | 18                                                                             | 455                                                                           |                                                                                | 49                                                                             | 92                                                                             | 56                                                                             | 3                                                                              | 39                                                                              | 96                                                                             | 39                                                                              | 98                                                                            |
| T(An)                                                                                  | 65                                                                              | 59                                                                            | 55                                                                             | 3                                                                              | 34                                                                             | 9                                                                              | 455                                                                           |                                                                                | 31                                                                             | 55                                                                             | 56                                                                             | 3                                                                              | 39                                                                              | 96                                                                             | 31                                                                              | 98                                                                            |

Table 1. Electron Microprobe Analyses for Reintegrated Feldspar Compositions and Thermometry Data

Note. Electron microprobe data and mineral formulas values are given, prior to adjustment for K-Na exchange. Asterisk = a reintegrated feldspar pair; r = a recrystallized, homogeneous sample; Kspar = K-feldspar; Plag = plagioclase.

cause the deformation temperatures determined from feldspar thermometry of these shear zones are similar to the hornblende blocking temperature of radiogenic argon (Harrison 1981).

Despite the clear correspondence of the structural setting of the samples, the results of feldspar thermometry, and the <sup>40</sup>Ar/<sup>39</sup>Ar ages, there are some difficulties inherent in the dating of deformation. The error estimates for the feldspar thermometer are accentuated by the steepness of the solvus limbs at low temperatures. In addition, given the uncertainty of assigning a single blocking temperature for hornblende, it is difficult to determine whether these younger ages represent the exact timing of deformation or minor cooling from deformation, where  $T_{\text{deformation}} \approx T_{\text{blocking}}$ . Regardless, the preservation of older ages in the duplex interior indicates that regional metamorphic conditions during the shearing event were not sufficiently high to thermally reset hornblende grains without dynamic processes beginning at ca. 1.18 Ga.

### Discussion

The SW Amazon craton was affected by widespread deformation during the 1.18-1.15-Ga interval. This deformation was accommodated by a network of sinistral, strike-slip shear zones referred to collectively as the Ji-Paraná shear zone. The predominantly strike-slip nature of these shear zones is inferred from their nearly vertical attitude with low rake mineral lineations and especially by shear sense indicator orientations. Results from feldspar thermometry reveal that shear zone activity occurred at temperatures of 450°–550°C, with higher temperatures (>600°C) recovered from the lessdeformed to undeformed interiors of duplex blocks. The deformation-induced recrystallization in mylonitic shear zones was responsible for age resetting, a conclusion further supported by the preservation of older ages, ca. 1.35 Ga, in the interior of duplex blocks. Thus, the wide range in ages recorded by <sup>40</sup>Ar/<sup>39</sup>Ar analysis of hornblende can be attributed to episodic activation of individual shear zones and not to differences in cooling rate among different crustal domains. The strike-slip environment appears not to have resulted in significant crustal thickening, which would have produced uniform isotopic age resetting related to the relaxation of crustal isotherms. Kinematic indicators from individual mylonitic shear zones indicate sinistral offsets throughout the IPSZ network, although a full understanding of the overall kinematic framework awaits future studies that identify the full extent of this deformation episode (e.g., the EW-trending shear zones to the NW of this study area). One factor that complicates this task is the possibility that portions of the Amazon craton may have been stranded as exotic terranes during Grenvillian tectonism, leaving incomplete the kinematic framework of the SW Amazon craton (e.g., Carrigan et al. 2003; Loewy et al. 2003; Tohver et al. 2004*a*).

The continent-continent collision that marks the beginning of a common geological history for Laurentia and Amazonia (fig. 5) is based on paleomagnetic data for both continents at ca. 1.2 Ga (Tohver et al. 2002). Because this collision is the starting point of the search for a compatible metamorphic history, any overlap in ages of geological events on both cratons for times before 1.2 Ga is unrelated to a common paleogeography. For southern Laurentia, the limit of Grenvillian deformation is the NE-SW-trending Llano Front (Denison et al. 1984), a prominent magnetic and gravity anomaly. Originally proposed as the boundary between cratonic elements with Nd model ages greater than 1.55 Ga and accreted arcs with Nd model ages less than 1.55 Ga and U-Pb ages of ca. 1.35 Ga (Van Schmus et al. 1996; Mosher 1998), the isotopic significance of the Llano Front has been called into question by recent work of Barnes et al. (1999), who demonstrated that older, ca. 1.7-Ga Laurentian crust is present to the south of the boundary as presently drawn. Regardless, the Llano Front separates the undeformed, stable craton to the NW from rocks affected by Grenvillian deformation to the SE (Mosher 1998). The timing of the accretion of the juvenile, 1.35-Ga Coal Creek volcanic arc south of this boundary is uncertain (Roback 1996). Mosher (1998) pointed to abundant felsic magmatism at 1.25 Ga as possibly related to the docking of the Coal Creek volcanic arc but favors another model with simultaneous accretion of the island arc during the later episode of continent-continent collision that was chiefly responsible for regional deformation and metamorphism. Support for this second, preferred model is found in observations of bimodal volcanism in west Texas beginning as early as 1.25 Ga, interpreted to reflect an extensional tectonic environment (Bickford et al. 2000). If so, these observations are at odds with the collisional environment required by the "early" 1.25-Ga arc accretion model.

Constraints on the timing of the major collisional event itself are established by the dating of pretectonic and posttectonic sills and dikes, bracketed between 1238 + 8/-6 and 1098 + 3/-2 Ma (Walker 1992). In addition, the dating of metamorphic zircon (1147  $\pm 2$  Ma, 1128  $\pm 6$  Ma) from eclo-



**Figure 4.** Summary plot of 17 samples with coexisting reintegrated feldspar compositions corrected for late-stage K-Na exchange, with enlargements at left and bottom to illustrate relation of reintegrated compositions to solvi. Squares indicate reintegrated compositions from samples with perthitic textures, and circles indicate compositions from homogeneous, recrystallized grains.

gitic rocks provides a minimum age of Llano tectonic activity (Roback and Carlson 1996) The collision resulted in substantial crustal thickening through both subduction and thrust faulting. Eclogites are reported as having equilibrated at pressures of >1.5 GPa at 500°C, while more regionally extensive gneisses record pressures of 800 MPa and temperatures of ~750°C (Wilkerson et al. 1988; Carlson and Schwarze 1997). This phase of active deformation, ascribed to A-type subduction, is considered to have ceased by 1098 Ma, a time marked by the extensive emplacement of postorogenic granites, resulting in widespread age resetting of the <sup>40</sup>Ar/<sup>39</sup>Ar and Rb-Sr systems (Wilkerson et al. 1988; Rougvie et al. 1999). The upper age limit on low-grade deformation in west Texas was established by the discovery of ca. 1.12-Ga zircons reported by Roths (1993) from granitic clasts in deformed, conglomeratic sediments overlying the >1.24-Ga basement (Bickford et al. 2000). Bickford and others (2000) reported <sup>40</sup>Ar/<sup>39</sup>Ar ages of 1.04 Ga for both hornblende and muscovite from shear zones, interpreted as the deformation age. New <sup>40</sup>Ar/<sup>39</sup>Ar data reported by Grimes and Copeland (2004) extends the range of this late deformation

episode to between 1.02 and 1.06 Ga. Thus, the greenschist/lower amphibolite deformation observed in west Texas is considerably (100–150 Ma) younger than the major, high-grade collisional event affecting the Llano Uplift (fig. 5).

Major deformation of the Llano region during the collisional phase of orogeny was marked by the formation of multiple generations of noncoaxial folds, with fivefold generations verging generally to the NE (Mosher 1998). Asymmetric fabrics in mylonitic shear zones also indicate general tectonic transport direction to the NE (Carter 1989; Mosher 1998; Reese and Mosher 2004), that is, nearly parallel to the Llano Front itself, which is indicative of bulk motion in an oblique collision zone (Carter 1989). Recent structural work in the Llano region confirms the NE trend of tectonic transport, ascribed to the docking of a continent to the south (Reese and Mosher 2004). Similar overprinting relationships of successive fold generations during earlier high-grade deformation of the west Texas basement was interpreted to reflect sinistral, strikeslip displacement by Bristol and Mosher (1989), presumably after an early 1.25-Ga extensional phase reported by Bickford et al. (2000). Deformation un-



**Figure 5.** Paleogeographic reconstruction of the oblique collision between southern Laurentia and the Amazon craton based on paleomagnetic data (modified from Tohver et al. 2002). Orthogonal map projection of Laurentia (in modern orientation) is centered on 30° of the ca. 1.2-Ga coordinates. Large arrow shows tectonic transport direction inferred for the Llano region by Mosher (1998). The inferred subsurface connection between the Grenville Front and Llano Front is shown as a dashed line in the midcontinental United States.

der low-grade conditions affected the southern Laurentian margin long after the main collisional event was over; strike-slip zone bounded basins in west Texas exposures interpreted as transpressional (Soegaard and Callahan 1994) were active approximately 100–150 Ma after the main deformational episode affected the Llano Uplift region (Bickford et al. 2000). The dextral offset observed during this later episode of deformation contrasts with the earlier sinistral motion, possibly reflecting either a change in relative plate motions, as proposed by Grimes and Mosher (2003), or a change in localized stress fields from continuous (ca. 100–150 Ma) indentor tectonics, as originally suggested by Mosher (1998).

A comparison of the Grenville history recorded in the SW Amazon craton with that observed in southernmost Laurentia reveals overlap in the ages of tectonic activity (fig. 6), with most Amazon ages in the 1.18-1.15-Ga range and Llano ages in the 1.15-1.10-Ga range. One possible explanation for the older ages preserved in the Amazon lies in the style of deformation recorded in both continents. The deformation registered in the Amazon craton is marked chiefly by strike-slip faults that caused minimal crustal thickening during the early Grenville (ca. 1.18-1.15 Ga) episode. The preservation of an earlier, ca. 1.35-Ga metamorphic history by the <sup>40</sup>Ar/<sup>39</sup>Ar system in hornblende outside of shear zones is evidence of a lack of thermal resetting following crustal thickening. The development of strike-slip faults rather than thrust faults signals a different geological meaning for Grenvillian (1.18-1.15 Ga) age data reported here from the SW Amazon craton, compared with slightly younger Grenvillian (1.15-1.10 Ga) ages from southern Laurentia. Namely, Amazon hornblende ages from shear zones record the timing of deformation, not the age of cooling through the hornblende blocking temperature. In contrast, substantial crustal thickening and resultant heating in the Llano region mean that only minerals with higher blocking temperatures, such as zircon or monazite have the potential to record the early orogenic history. Given the clockwise PT loop expected for continent-continent collision, the peak thermal conditions will postdate the high *P*-low *T* conditions that mark the onset of the collision itself. This fact aside, the inference that Llano region age data from metamorphic minerals provide a minimum age constraint for the timing of collision-related deformation is supported by numerous U-Pb studies of high-pressure terranes that conclude that metamorphic zircon is more likely to grow during the retrograde portion of the PT path, that is, during the postcollisional exhumation phase (e.g., Roberts and Finger 1997; Fernandez-Suarez et al. 2002; Whitehouse and Platt 2003; Timmerman et al. 2004). Like the Ontario-New York segment of the Grenville Province (e.g., Mezger et al. 1993) geochronological constraints on tectonism in southern Laurentia established by dating of metamorphic minerals probably reflect the postcollisional phase of orogenesis, not the timing of deformation itself, as is the case with the SW Amazon craton.



Comparison of the time-temperature evolu-Figure 6. tion of the Llano province (white symbols) and the deformation ages reported here for the SW Amazon craton (black symbols). U-Pb data are represented by diamonds, <sup>40</sup>Ar-<sup>39</sup>Ar data are shown as circles, and Rb-Sr data are shown as diamonds. The black crosshatched area shows the absolute constraints on the timing of Llano deformation (1.24-1.10 Ga) reported by Walker (1992) and Mosher (1998). Llano geochronological data are compiled from work by Reese et al. (1996), Mosher (1998), and Rougvie et al. (1999), which we interpret as reflecting cooling postdating deformation of a crustally thickened orogenic zone. Amazon ages in the 1.18-1.15 Ga range from <sup>40</sup>Ar/<sup>39</sup>Ar analysis of hornblende are interpreted as recording deformation ages related to collision with southern Laurentia. The range in ages for this deformation is shown by gray crosshatching in the region that overlaps absolute constraints on Llano region deformation. The variation in temperature assigned to these ages is based on temperatures of deformation determined from feldspar thermometry. Older, ca. 1.35-Ga ages are depicted as recording cooling through the hornblende blocking temperature from an older high-grade event.

### Conclusions

The SW margin of the Amazon craton is marked by a wide network of shear zones (~200 km), called the Ji-Paraná shear zone, which is characterized by sinistral strike-slip displacement. The <sup>40</sup>Ar/<sup>39</sup>Ar age data and feldspar thermometry reveal at least two metamorphic episodes that affected the Am-

azon basement rocks. Vestiges of an older event at ca. 1.35 Ga are observed in widespread gneissic fabrics that reflect strain under upper amphibolitic to granulitic conditions. Displacement along the JPSZ took place at upper greenschist/lower amphibolite conditions that reset argon ages. The timing of this deformation varies from ca. 1.18 to 1.15 Ga, which is compatible with the broad limits of Grenvillian deformation in southern Laurentia. We interpret the difference between deformation ages preserved in Amazonia and the somewhat younger ages of southern Laurentia (cooling/retrograde growth ages) as a natural consequence of the clockwise PT loop expected for collision tectonics. This difference in the geological significance of geochronological data underlies the compatibility of the tectonometamorphic histories preserved on both sides of the collisional orogen. The inferred asymmetrical orogenic structure is supported by observations of widespread crustal thickening in Laurentia accommodated by thrust faults, contrasted with the predominantly strikeslip deformation of the SW Amazon craton. These observations expand on the previously proposed collision between the SW Amazon craton and southernmost Laurentia during early Grenvillian times (ca. 1.2 Ga). Further work is necessary to understand fully the kinematics of the interactions between Amazonia and Laurentia and its implications for Rodinia reconstructions.

#### A C K N O W L E D G M E N T S

Fieldwork was supported with assistance from the Stichting Shurmannfonds to B. van der Pluijm. We thank R. da Silva Sousa and the Companhia de Pesquisa de Recursos Minerais office of Porto Velho for the generous support of fieldwork in Rondônia. Laboratory work was funded by National Science Foundation (NSF) grant EAR-02-30059 and the Scott Turner Fund of the University of Michigan. We thank M. Johnson and C. Hall for assistance at the University of Michigan argon geochronology laboratory and C. Henderson for help with the electron microprobe in the R. B. Mitchell Electron Microbeam Laboratory, which was funded in part by NSF grants EAR 99-11352 and EAR 96-28196. Helpful reviews by S. Mosher, M. E. Bickford, and E. Hartz significantly improved the manuscript.

#### REFERENCES CITED

- Barnes, M. A.; Rohs, C. R.; Anthony, E. Y.; Van Schmus, W. R.; and Dension, R. E. 1999. Isotopic and elemental chemistry of subsurface Precambrian igneous rocks, west Texas and eastern New Mexico. Rocky Mt. Geol. 34:245–262.
- Bettencourt, J. S.; Tosdal, R. M.; Leite, W. B.; and Payolla, B. L. 1999. Mesoproterozoic rapakivi granites of the Rondônia Tin Province, southwestern border of the Amazonian craton, Brazil. I. Reconnaissance U-Pb geochronology and regional implications. Precambrian Res. 95:41–67.
- Bickford, M. E.; Soegaard, K.; Nielsen, K. C.; and Mc-Lelland, J. M. 2000. Geology and geochronology of Grenville-aged rocks in the Van Horn and Franklin Mountains area, west Texas: implications for the tectonic evolution of Laurentia during the Grenville. Geol. Soc. Am. Bull. 112:1134–1148.
- Bohlen, S. R., and Essene, E. J. 1977. Feldspar and oxide thermometry of granulites in the Adirondack Highlands. Contrib. Mineral. Petrol. 62:153–169.
- Bristol, D. A., and Mosher, S. 1989. Grenville-age, polyphase deformation of mid-Proterozoic basement, NW Van Horn Mountains, Trans-Pecos, Texas. J. Geol. 97: 25–43.
- Carlson, W., and Schwarze, E. 1997. Petrological significance of prograde homogenization of growth zoning in garnet: an example from the Llano Uplift. J. Metamorph. Geol. 15:631–644.
- Carrigan, C. W.; Miller, C. F.; Fullagar, P. D.; Bream, B. R.; Hatcher, R. D.; and Coath, C. D. 2003. Ion microprobe age and geochemistry of southern Appalachian basement, with implications for Proterozoic and Paleozoic reconstructions. Precambrian Res. 120:1–36.
- Carter, K. E. 1989. Grenville orogenic affinities in the Red Mountain area, Llano County, Texas. Can. J. Earth Sci. 26:1124–1135.
- Cawood, P. A.; McCausland, P. J. A.; and Dunning, G. R. 2001. Opening Iapetus: constraints from the Laurentian margin in Newfoundland. Geol. Soc. Am. Bull. 113:443–453.
- Dalziel, I. W. D.; Mosher, S.; and Gahagan, L. M. 2000. Laurentia-Kalahari collision and the assembly of Rodinia. J. Geol. 108:499–513.
- Davidson, A. 1998. An overview of the Grenville Province, Canadian Shield. *In* Geology of the Precambrian Superior and Grenville Provinces and Precambrian fossils in North America. Geol. Can. 7:205–270.
- Denison, R. E.; Lidiak, E. G.; Bickford, M. E.; and Kisvarsanyi, E. B. 1984. Geology and geochronology of Precambrian rocks in the central interior region of the United States. U.S. Geol. Surv. Prof. Pap. 1241-C, 33 p.
- Easton, R. M. 1992. The Grenville Province and the Proterozoic history of central and southern Ontario. Ont. Geol. Surv. Spec. Vol. 4:715–904.

- Fernandez-Suarez, J.; Corfu, F.; Arenas, R.; Marcos, A.; Catalan, J. R. M.; Garcia, F. D.; and Abati, J. 2002. U-Pb evidence for a polyorogenic evolution of the HP-HT units of the NW Iberian Massif. Contrib. Mineral. Petrol. 143:236–253.
- Fuhrman, M. L., and Lindsley, D. H. 1988. Ternary feldspar modeling and thermometry. Am. Mineral. 73: 201–215.
- Gower, C. F.; Ryan, A. B.; and Rivers, T. 1990. Mid-Proterozoic Laurentia-Baltica: an overview of its geological evolution and a summary of the contributions made by this volume. Geol. Assoc. Can. Spec. Pap. 38:1–13.
- Grimes, S. W., and Copeland, P. 2004. Thermochronology of the Grenville Orogeny in west Texas. Precambrian Res. 131:23–54.
- Grimes, S. W., and Mosher, S. 2003. Structure of the Carrizo Mountain Group, southeastern Carrizo Mountains, west Texas: a transpressional zone of the Grenville orogen. Tectonics 22:1003; doi/10.1029/ 2001TC001316.
- Hanson, R. E.; Crowley, J. L.; Bowring, S. A.; Ramezani, J.; Gose, W. A.; Dalziel, I. W. D.; Pancake, J. A.; Seidel, E. K.; Blenkinsop, T. G.; and Mukwakwami, J. 2004. Coeval large-scale magmatism in the Kalahari and Laurentian cratons during Rodinia assembly. Science 304:1126–1129; doi/10.1126/science.1096329.
- Harrison, M. 1981. Diffusion of <sup>40</sup>Ar in hornblende. Contrib. Mineral. Petrol. 78:324–331.
- Hartz, E. H., and Torsvik, T. H. 2002. Baltica upside down: a new plate tectonic model for Rodinia and the Iapetus Ocean. Geology 30:255–258.
- Hoffman, P. F. 1991. Did the breakout of Laurentia turn Gondwana inside out? Science 252:1409–1412.
- Jacobs, J.; Bauer, W.; and Fanning, C. M. 2003. New age constraints for Grenville-age metamorphism in western central Dronning Maud Land (East Antarctica), and implications for the palaeogeography of Kalahari in Rodinia. Int. J. Earth Sci. 92:301–315; doi/10.1007/ s00531-003-0335-x.
- Jacobs, J.; Thomas, R. J.; and Weber, K. 1993. Accretion and indentation tectonics at the southern edge of the Kaapvaal craton during the Kibaran (Grenville) orogeny. Geology 21:203–206.
- Kroll, H.; Evangelakakis, C.; and Voll, G. 1993. Twofeldspar thermometry: a review and revision for slowly cooled rocks. Contrib. Mineral. Petrol. 114: 510–518.
- Lindsley, D. H., and Nekvasil, H. 1989. A ternary feldspar model for all reasons. EOS: Trans. Am. Geophys. Union 70:506.
- Litherland, M.; Annells, R. N.; Darbyshire, D. P. F.; Fletcher, C. J. N.; Hawkins, M. P.; Klinck, B. A.; Mitchell, W. I., et al. 1989. The Proterozoic of eastern Bolivia and its relationship to the Andean mobile belt. Precambrian Res. 43:157–174.

- Loewy, S. L.; Connelly, J. N.; Dalziel, I. W. D.; and Gower, C. F. 2003. Eastern Laurentia in Rodinia: constraints from whole rock Pb and U/Pb geochronology. Tectonophysics 375:169–197.
- Mezger, K.; Essene, E. J.; van der Pluijm, B. A.; and Halliday, A. N. 1993. U-Pb geochronology of the Grenville Orogen of Ontario and New York: constraints on ancient crustal tectonics. Contrib. Mineral. Petrol. 114: 13–26.
- Mosher, S. 1998. Tectonic evolution of the southern Laurentian Grenville orogenic belt. Geol. Soc. Am. Bull. 110:1357–1375.
- Payolla, B. L.; Bettencourt, J. S.; Kozuch, M.; Leite, W. B.; Fetter, A. H.; and Van Schmus, W. R. 2002. Geological evolution of the basement rocks in the eastcentral part of the Rondônia Tin Province, SW Amazon craton, Brazil: U-Pb and Sm-Nd isotopic constraints. Precambrian Res. 119:141–169.
- Piper, J. D. A. 1987. Paleomagnetism and the continental crust. New York, Open University Press, 434 p.
- Powell, C. M.; Jones, D. L.; Pisarevsky, S.; and Wingate, M. T. D. 2001. Palaeomagnetic constraints on the position of the Kalahari craton in Rodinia. Precambrian Res. 110:33–46; doi/10.1016/S0301-9268(01)00179-6.
- Raase, P. 1998. Feldspar thermometry: a valuable tool for deciphering the thermal history of granulite-facies rocks, as illustrated with metapelites from Sri Lanka. Can. Mineral. 36:67–86.
- Reese, J. F., and Mosher, S. 2004. Kinematic constraints on Rodinia reconstructions from the core of the Texas Grenville orogen. J. Geol. 112:185–205.
- Rivers, T. 1997. Lithotectonic elements of the Grenville Province: review and tectonic implications. Precambrian Res. 86:117–154.
- Rivers, T.; Martignole, J.; Gower, C. F.; and Davidson, A. 1989. New tectonic divisions of the Grenville Province, southeast Canadian shield. Tectonics 8:63– 84.
- Roback, R. C. 1996. Characterization and tectonic evolution of a Mesoproterozoic island arc in the southern Grenville Orogen, Llano uplift, central Texas. Tectonophysics 265:29–52.
- Roback, R. C., and Carlson, W. D. 1996. Constraining the timing of high-P metamorphism in the Llano Uplift through geochronology of eclogitic rocks. Geol. Soc. Am. Abstr. Program 28:60–61.
- Roberts, M. P., and Finger, F. 1997. Do U-Pb zircon ages from granulites reflect peak metamorphic conditions? Geology 25:319–322.
- Roths, P. J. 1993. Geochemical and geochronological studies of the Grenville-age (1250–1000 Ma) Allamoore and Hazel Formations, Hudspeth and Culberson counties, west Texas. *In* Soegaard, K.; Nielsen, K. C.; Marsaglia, K. M.; and Barnes, C. G., eds. Precambrian geology of the Franklin Mountains and Van Horn Area, Trans-Pecos Texas: Dallas, Texas. Geol. Soc. Am. SC Sect. Meeting Guidebook, University of Texas, p. 11–35.
- Rougvie, J. R.; Carlson, W. D.; Copeland, P.; and Connelly, J. N. 1999. Late thermal evolution of Proterozoic

rocks in the northeastern Llano Uplift, central Texas. Precambrian Res. 94:49–72.

- Samson, S. D., and Alexander, E. C. 1987. Calibration of the interlaboratory <sup>40</sup>Ar/<sup>39</sup> standard Mmhb-1. Chem. Geol. 66:27–34.
- Scandolâra, J. E.; Rizzotto, G. J.; Amorim, J. L.; Bahia, R. B. C.; Quadros, M. L.; and da Silva, C. R. 1999. Geological map of Rondônia, scale 1 : 1,000,000. Rio de Janeiro, Companhia de Pesquisa de Recursos Minerais.
- Soegaard, K., and Callahan, D. M. 1994. Late Middle Proterozoic Hazel Formation near Van Horn, Trans-Pecos Texas: evidence for transpressive deformation in Grenvillian basement. Geol. Soc. Am. Bull. 106:413– 423.
- Tassinari, C. C. G.; Bettencourt, J. S.; Geraldes, M. C.; Macambira, M. J. B.; and Lafon, J. M. 2000. The Amazonian Craton. *In* Tectonic evolution of South America, Int. Geol. Cong., 31st (Rio de Janeiro, 2000), p. 41–97.
- Timmermann, H.; Štědra, V.; Gerdes, A.; Noble, S. R.; Parrish, R. R.; and Dörr, W. 2004. The problem of dating high-pressure metamorphism: a U-Pb isotope and geochemical study on eclogites and related rocks of the Mariánské Lázně Complex, Czech Republic. J. Petrol. 45:1311–1338.
- Tohver, E.; Bettencourt, J. S.; Tosdal, R.; Mezger, K.; Luiz, W. B.; and Payolla, B. L. 2004*a*. Terrane transfer during the Grenville orogeny: tracing the Amazonian ancestry of southern Appalachian basement through Pb and Nd isotopes. Earth Planet. Sci. Lett. 228:161– 176.
- Tohver, E.; van der Pluijm, B. A.; Mezger, K.; Essene, E. J.; Scandolâra, J. E.; and Rizzotto, G. R. 2004b. Significance of the Nova Brasilândia metasedimentary belt in western Brazil: redefining the Mesoproterozoic boundary of the Amazon craton. Tectonics v. 23 TC 6004; doi: 10.1028/2003TC001563.
- Tohver, E.; van der Pluijm, B. A.; Mezger, K.; Scandolâra, J. E.; and Essene, E. J. 2005. Two-stage tectonic history of the SW Amazon craton in the late Mesoproterozoic: identifying a cryptic suture zone. Precambrian Res., forthcoming.
- Tohver, E.; van der Pluijm, B. A.; Van der Voo, R.; Rizzotto, G.; and Scandolâra, J. E. 2002. Paleogeography of the Amazon craton at 1.2 Ga: early Grenvillian collision with the Llano segment of Laurentia. Earth Planet. Sci. Lett. 199:185–200.
- Van Schmus, W. R.; Bickford, M. E.; and Turek, A. 1996. Proterozoic geology of the east-central mid-continent basement. *In* van der Pluijm, B. A., and Catacosinos, P. A., eds. Basement and basins of eastern North America. Geol. Soc. Am. Spec. Pap. 308:7–32.
- Voll, G.; Evangelakakis, C.; and Kroll, H. 1994. Revised two-feldspar thermometry applied to Sri Lankan feldspars. Precambrian Res. 66:351–377.
- Walker, N. 1992. Middle Proterozoic geologic evolution of Llano uplift, Texas: evidence from U-Pb zircon geochronometry. Geol. Soc. Am. Bull. 104:494–504.
- Weil, A. B.; Van der Voo, R.; MacNiocaill, C.; and Meert,

J. G. 1998. The Proterozoic supercontinent Rodinia: paleomagnetically derived reconstruction for 1100 to 800 Ma. Earth Planet. Sci. Lett. 154:13–24.

- Wen, S., and Nekvasil, H. 1994. SOLVCALC: an interactive graphics program package for calculating the ternary feldspar solvus and for two-feldspar geothermometry. Comput. Geosci. 20:1025–1040.
- White, D. J.; Easton, R. M.; Culshaw, N. G.; Milkereit,B.; Forsyth, D. A.; Carr, S.; Green, A. G.; and Davidson,A. 1994. Seismic images of the Grenville Orogen inOntario: the Abitibi-Grenville lithoprobe transect

seismic reflection results. I. The western Grenville Province and Pontiac Subprovince. Can. J. Earth Sci. 31:293–307.

- Whitehouse, M. J., and Platt, J. P. 2003. Dating high-grade metamorphism: constraints from rare-earth elements in zircon and garnet. Contrib. Mineral. Petrol. 145: 61–74.
- Wilkerson, A.; Carlson, W. D.; and Smith, D. 1988. High pressure metamorphism during the Llano orogeny inferred from Proterozoic eclogite remnants. Geology 16:391–394.

# Appendix C from E. Tohver et al., "Late Mesoproterozoic Deformation of SW Amazonia (Rondônia, Brazil): Geochronological and Structural Evidence for Collision with Southern Laurentia"

(J. Geol., vol. 113, no. 3, p. 309)

## <sup>40</sup>Ar/<sup>39</sup>Ar Techniques and Isotopic Data

Hornblende grains were checked for compositional zoning and intergrowths with cummingtonite or actinolite using the electron microprobe in energy-dispersive mode. Euhedral, unaltered grains of hornblende ranging in size from 375 to 850  $\mu$ m were selected by hand with a binocular microscope. Samples consisting of 10–15 grains were weighed and packaged in foil at the University of Michigan Radiogenic Isotope Geochemistry Laboratory. Samples were irradiated for 10–14 d at the University of Michigan Ford Phoenix Reactor. Neutron fluxes were monitored with samples of the Mmhb-1 standard using an age of 520.4 Ma (Samson and Alexander 1987). Single grains were step-heated using a defocused argon-ion laser until the grain was completely fused. Nonargon components were extracted using two 1/s SAES getters (ST101 alloy) and a liquid N<sub>2</sub> cold finger. Argon isotopic ratios were measured with a mass spectrometer (Mass Analyzer Products 215) with a Niers source and Balzer electron multiplier. Extraction line blanks were run after every 10 heating steps. Duplicates were run on all samples to determine grain-to-grain variability and reproducibility of results. Plateau ages were calculated as the inverse mean of ages from individual increments in the plateau, with a plateau defined by five or more consecutive steps containing >50% of <sup>39</sup>Ar whose errors overlap at the 2 $\sigma$  level (fig. C1). Where compositional differences are clearly responsible for disturbances in the age spectra or plateaus are not otherwise clear, only the total gas age is reported.



Fra

### App. C from E. Tohver et al., "Deformation of SW Amazonia"

**Figure C1.** Age spectra from <sup>40</sup>Ar/<sup>39</sup>Ar analysis of hornblende samples. Sample names followed by an asterisk denote hornblende grains separated from shear zone samples. Note that the Ca/K and Cl/K ratios are generally plateau-like until the final fusion steps, suggestive of relatively homogeneous hornblende. Compositions deduced from these ratios are similar for both shear zone and duplex block samples, suggesting that mineralogical differences (i.e., the presence of actinolite in shear zone amphiboles) cannot account for the different ages.

# Appendix B from E. Tohver et al., "Late Mesoproterozoic Deformation of SW Amazonia (Rondônia, Brazil): Geochronological and Structural Evidence for Collision with Southern Laurentia"

(J. Geol., vol. 113, no. 3, p. 309)

## Geochronological Sample Descriptions and Analytical Techniques

| Sample | Location (lat., long.)  | Sample description                                                                                                                                                                                            | Mineral assemblage                                                                                                                                                                          | 40Ar/39Ar, Hbl total gas age | 40Ar/ <sup>39</sup> Ar, Hbl plateau |
|--------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|
| 108    | 9°58.51′S, 63°2.24′W    | Quarry outcrop; strong<br>NS foliation in Serra<br>de Previdencia suite,<br>granite with<br>subordinate<br>charnockite, some<br>igneous features<br>preserved                                                 | Perthitic Kspar with<br>antiperthitic Plag; Opx<br>(Fs <sub>90</sub> ) rimmed by Bio/<br>Z/Ap/Al/Mag/Hem/<br>Ilm/Hbl; Mag<br>overgrown by titanite                                          | 1168 ± 3                     | 1175 ± 3                            |
| 113    | 10°9.143'S, 62°50.54'W  | Uniao Massif-sheared<br>rapakivi suite; zircon<br>age of 1.35 Ga<br>reported by<br>Bettencourt et al.<br>(1999); protomylonitic<br>augen gneiss;<br>subvertical lineation<br>defined by stretched<br>feldspar | Large clasts of perthitic<br>and antiperthitic<br>feldspars in<br>recrystallized matrix;<br>Bio/Hbl/Plag/Ksp/Ilm/<br>Z/Ap/Al; Mag<br>inclusions in Hbl<br>(originally igneous<br>pyroxene?) | 1185 ± 4, 1161 ± 4           | 1188 ± 5                            |
| 118    | 10°17.75′S, 62°46.26′W  | Migmatite with injections<br>of undeformed Kspar-<br>rich leucosomes; Hbl/<br>Garnet in<br>recrystallized matrix;<br>steep foliation strikes<br>N 20° E                                                       | Poikiloblastic, unzoned<br>garnet<br>(Alm <sub>72</sub> Grs <sub>5</sub> Pyr <sub>19</sub> Sps <sub>3</sub> )/<br>Bio/Plag/Kspar/Qtz/Z/<br>Mon/Hbl; no oxides<br>present                    | 1245 ± 2, 1177 ± 2           |                                     |
| 119    | 10°22.262′S, 62°33.48′W | Roadcut; dark green<br>charnockite, extremely<br>dense; deformed<br>feldspar-rich pods                                                                                                                        | Gar/Opx/Cpx/Hbl/Kspar/<br>Mag/Ap/Cc/Qtz; >20%<br>oxides ilmenite; no<br>Plag; Hbl strained<br>with cataclastic rims,<br>large unzoned garnet                                                | 1356 ± 3, 1317 ± 3           |                                     |
| 121    | 10°31.85′S, 62°23.86′W  | Road outcrop; vertical<br>foliation 235/70NW;<br>mafic dikes affected<br>by high-grade folding;<br>greenish rock with<br>garnet                                                                               | Gar/nonperthitic Kspar/<br>Plag/Qtz/Bio/Z/Chl                                                                                                                                               | 1367 ± 3, 1328 ± 3           | 1367 ± 3                            |

 Table B1

 Geochronological Sample Descriptions and Analytical Techniques

### Table B1 (Continued)

| Sample | Location (lat., long.) | Sample description                                                                                                                                                                                                                                      | Mineral assemblage                                                                                                                                                                           | 40Ar/39Ar, Hbl total<br>gas age | 40Ar/ <sup>39</sup> Ar, Hbl plateau |
|--------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------|
| 123    | 10°42.52′S, 62°15.38′W | Massive, garnetiferous<br>charnockite from<br>within duplex; weak<br>foliation formed by<br>amphibole, 203/75W;<br>U-Pb zircon 1.35–1.55<br>Ga (Bettencourt et al.<br>1999)                                                                             | Garnet rimming Plag,<br>HbL, Opx Hbl/Opx/<br>Ilm/Plag/Kspar/Qtz/<br>All/FeS/Cc/Ap                                                                                                            | 1142 ± 5, 1243 ± 3              | 1155 ± 5                            |
| 125    | 11°9.41′S, 61°54.01′W  | Partially mylonitized<br>Serra de Previdencia<br>granitoid; shear zones<br>180/75W; lineation<br>plunges 15 to N; shear<br>zone with well-<br>developed C-C' fabric,<br>sigma clasts showing<br>sinistral offset; rare<br>igneous textures<br>preserved | Spessartine-rich Gar with<br>Ep inclusions; both<br>recrystallized Kspar/<br>Plag and relict igneous<br>grains with perthitic<br>texture; Qtz/Bio/Hbl/<br>Chl/Ap/All/Z                       | 1310 ± 5                        | 1190 ± 6                            |
| 126    | 11°10.93′S, 61°54.17′W | Banded garnet-<br>amphibolite gneiss<br>partially migmatized<br>with large Plag-rich<br>leucosomes; axial<br>plane of chief fold set<br>330/90                                                                                                          | Large garnet, strongly<br>zoned with Grs-rich,<br>low-Mg# rims<br>inclusions of Ep/Qtz/<br>Plag/Hbl/Ap/Kspar/Al/<br>Bio/Chl/Ti-mag/hem/<br>mon/ep; matrix<br>foliation defined by<br>biotite | 1318 ± 3, 1348 ± 3              | 1325 ± 4, 1335 ± 5                  |
| 303    | 9°47.78′S, 62°55.60′W  | Partially migmatized<br>outctop with igneous<br>foliation defined by<br>aligned large feldspar<br>grains                                                                                                                                                | Hbl/mesoperthite/<br>antiperthite/Qtz/Al/<br>Mag/Hem/Ilm/Z                                                                                                                                   | 1307 ± 2                        |                                     |
| 308    | 10°24.85′S, 62°30.36′W | Sheared sillimanite<br>gneiss with foliation<br>290/70N                                                                                                                                                                                                 | Gar/Hbl/Bio/Sill/Ilm/Qtz/<br>Kspar/Plag                                                                                                                                                      | $1067 \pm 2, 1096 \pm 2$        |                                     |
| 314    | 11°24.05′S, 61°19.25′W | Outcrop in field near<br>amphibolitized mafic<br>intrusion; foliation<br>partly formed by Hbl<br>and Bio, aligned with<br>regional NNW/SSE<br>trend                                                                                                     | Hbl/Bio/Kspar/Plag/Z/Ti-<br>Mag/Ilm                                                                                                                                                          | 1161 ± 5, 1299 ± 5              |                                     |

Note. Al = allanite, Ap = apatite, Bio = biotite, Cc = calcite, Chl = chlorite, Ep = epidote, Gar = garnet, Hbl = hornblende, Hem = hematite, Ilm = ilmenite, Kspar = K-feldspar, Mag = magnetite, Mon = monazite, Plag = plagioclase, Qtz = quartz, Sill = sillimanite, Z = zircon.

# Appendix A from E. Tohver et al., "Late Mesoproterozoic Deformation of SW Amazonia (Rondônia, Brazil): Geochronological and Structural Evidence for Collision with Southern Laurentia"

(J. Geol., vol. 113, no. 3, p. 309)

### **Feldspar Thermometry Methods**

The determination of the preexsolution compositions of coexisting feldspar pairs is undertaken by reintegration of the individual exsolved feldspar grains (Bohlen and Essene 1977). Two different electron microprobe analytical methods were used to recover the original composition of exsolved feldspars for solvus thermometry: point analyses  $(3 \times 3 \mu m)$  with reintegration by density-corrected image analysis (average of 100 spot analyses per grain; two feldspar pairs per sample) and grain transects by open beam (15  $\times$  15  $\mu$ m) analysis (20–75 analyses per grain; two feldspar pairs per sample). Microprobe operating conditions were the same for both techniques, with accelerating potential set at 15 keV and a sample current of 10 nA, to minimize Na volatilization. Calibration was carried out with mineral standards with sample analyses conducted for 30 s in wavelength dispersive mode. Where exsolved lamellae are sufficiently thick for point analyses, the first technique is preferred because of the bias introduced from faulty ZAF corrections based on an inhomogeneous matrix (Bohlen and Essene 1977). Apparent disequilibrium between feldspar pairs is common, as noted by many authors (Fuhrman and Lindsley 1988; Kroll et al. 1993; Voll et al. 1994; Raase 1998) because of late-stage K-Na exchange between plagioclase and K-feldspar (Kroll et al. 1993). Compositions were corrected for this late cation exchange by allowing a variance of  $\leq 2 \mod X_{Or}$  and  $X_{Ab}$  (i.e., within microprobe analytical error) and assuming constant  $X_{An}^{Pl}$  and  $X_{An}^{Ksp}$  using the SOLVCALC program (Fuhrman and Lindsley 1988; Wen and Nekvasil 1994), a process that yielded more concordant temperatures (i.e.,  $T_{An} \approx T_{Or} \approx T_{Ab}$ ). Temperatures have an uncertainty of ~75°C based on errors in the Margules parameters for feldspar and analytical uncertainty from the reintegration technique. In samples yielding discordant temperatures ( $T_{Ab} \neq T_{Or} \neq T_{An}$ ), the  $T_{Ab}$  is considered the most reliable because it is controlled by the slope of coexisting feldspar tie lines, as opposed to the plagioclase content of matrix K-feldspar ( $T_{Ap}$ ) or the K-feldspar content of matrix plagioclase ( $T_{Or}$ ), both of which are subject to greater analytical uncertainty (Kroll et al. 1993; Raase 1998).

# Appendix D from E. Tohver et al., "Late Mesoproterozoic Deformation of SW Amazonia (Rondônia, Brazil): Geochronological and Structural Evidence for Collision with Southern Laurentia"

(J. Geol., vol. 113, no. 3, p. 309)

## Argon Isotope Data from Analyzed Samples

### Table D1

| Argon Isotope | Data | from | Ana | lyzed | Samples |
|---------------|------|------|-----|-------|---------|
|---------------|------|------|-----|-------|---------|

| Step         | Fraction       | 40Ar/39Ar | <sup>38</sup> Ar/ <sup>39</sup> Ar | <sup>37</sup> Ar/ <sup>39</sup> Ar | <sup>36</sup> Ar/ <sup>39</sup> Ar | $^{40}{\rm Ar}^{*/^{39}}{\rm Ar}$ | % atm  | Ca/K  | Age (Ma) | $1\sigma$ error |
|--------------|----------------|-----------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|--------|-------|----------|-----------------|
| Sample et107 | hornblende:    |           |                                    |                                    |                                    |                                   |        |       |          |                 |
| c6b-100      | .002           | 260.363   | .800                               | 2.188                              | .058                               | 243.162                           | 6.606  | 2.188 | 3360     | 48              |
| c6b-200      | .004           | 282.771   | .634                               | 2.285                              | .073                               | 261.335                           | 7.581  | 2.285 | 3471     | 38              |
| c6b-275      | .004           | 165.410   | 1.672                              | 3.102                              | .004                               | 164.153                           | .760   | 3.102 | 2781     | 58              |
| c6b-350      | .161           | 57.832    | 1.796                              | 2.697                              | .001                               | 57.430                            | .694   | 2.697 | 1491     | 3               |
| c6b-360      | .061           | 48.051    | 1.760                              | 2.688                              | 001                                | 48.271                            | 458    | 2.688 | 1321     | 7               |
| c6b-370      | .049           | 47.809    | 1.787                              | 2.733                              | 001                                | 47.981                            | 359    | 2.733 | 1316     | 6               |
| d6b-475      | .380           | 48.089    | 1.782                              | 2.710                              | .000                               | 8.006                             | .172   | 2.710 | 1316     | 1               |
| d6b-550      | .093           | 48.487    | 1.798                              | 2.728                              | .001                               | 48.153                            | .690   | 2.728 | 1319     | 4               |
| c6b-575      | .015           | 49.545    | 1.815                              | 2.820                              | 001                                | 49.849                            | 613    | 2.820 | 1352     | 29              |
| c6b-650      | .031           | 48.844    | 1.803                              | 2.765                              | .000                               | 48.880                            | 073    | 2.765 | 1333     | 14              |
| c6b-750      | .032           | 49.054    | 1.790                              | 2.743                              | 002                                | 49.758                            | -1.436 | 2.743 | 135      | 13              |
| c6b-1000     | .026           | 50.067    | 1.839                              | 2.925                              | 001                                | 50.340                            | 545    | 2.925 | 1361     | 17              |
| c6b-3000     | .142           | 48.285    | 1.755                              | 2.826                              | .000                               | 48.201                            | .174   | 2.826 | 1320     | 4               |
| J value =    | .022373 $\pm$  | .00004419 |                                    |                                    |                                    |                                   |        |       |          |                 |
| Total gas a  | 1383 = 1383    | ± 2 Ma    |                                    |                                    |                                    |                                   |        |       |          |                 |
| Plateau age  | $e = 1316 \pm$ | 2 Ma      |                                    |                                    |                                    |                                   |        |       |          |                 |
| Sample et123 | hornblende:    | :         |                                    |                                    |                                    |                                   |        |       |          |                 |
| c3b-100      | .004           | 91.177    | 1.837                              | 1.570                              | .122                               | 55.111                            | 39.556 | 1.570 | 1452     | 76              |
| c3b-200      | .015           | 57.091    | .050                               | .556                               | .021                               | 50.920                            | 10.810 | .556  | 1374     | 19              |
| c3b-300      | .033           | 39.995    | .019                               | .152                               | .000                               | 39.937                            | .147   | .152  | 1154     | 11              |
| c3b-301      | .012           | 37.811    | .017                               | .175                               | .003                               | 36.933                            | 2.321  | .175  | 1089     | 28              |
| c3b-325      | .010           | 38.823    | .028                               | .266                               | .002                               | 38.326                            | 1.281  | .266  | 1119     | 33              |
| c3b-350      | .009           | 38.653    | .044                               | .402                               | .007                               | 36.582                            | 5.358  | .402  | 1081     | 45              |
| c3b-375      | .008           | 39.275    | .063                               | .571                               | .005                               | 37.754                            | 3.872  | .571  | 1107     | 47              |
| c3b-400      | .008           | 39.225    | .103                               | .885                               | 001                                | 39.416                            | 485    | .885  | 1143     | 47              |
| c3b-450      | .015           | 40.773    | .251                               | 1.614                              | .001                               | 40.575                            | .488   | 1.614 | 1168     | 23              |
| c3b-500      | .049           | 40.573    | .402                               | 2.465                              | .000                               | 40.720                            | 363    | 2.465 | 1171     | 6               |
| c3b-550      | .016           | 39.075    | .371                               | 2.271                              | 001                                | 39.265                            | 488    | 2.271 | 1140     | 19              |
| c3b-600      | .668           | 39.013    | .459                               | 2.790                              | .000                               | 39.069                            | 143    | 2.790 | 1135     | 6               |
| c3b-605      | .063           | 38.849    | .457                               | 2.658                              | 001                                | 39.260                            | -1.59  | 2.658 | 1140     | 18              |
| c3b-620      | .018           | 38.912    | .373                               | 2.272                              | 004                                | 40.143                            | -3.165 | 2.272 | 1158     | 17              |
| c3b-67       | .018           | 38.397    | .342                               | 2.083                              | 002                                | 38.853                            | -1.187 | 2.83  | 1131     | 17              |
| c3b-750      | .032           | 38.352    | .304                               | 1.897                              | .000                               | 38.314                            | .101   | 1.897 | 1119     | 8               |
| c3b-780      | .001           | 38.253    | .259                               | 1.594                              | 004                                | 39.440                            | -3.11  | 1.594 | 1143     | 18              |
| c3b-850      | .001           | 38.371    | .249                               | 1.541                              | .001                               | 37.990                            | .992   | 1.541 | 1112     | 23              |
| c3b-1000     | .004           | 38.440    | .372                               | 2.348                              | .001                               | 38.188                            | .655   | 2.348 | 1116     | 7               |
| c3b-3000     | .015           | 39.320    | .311                               | 1.951                              | .000                               | 39.369                            | 124    | 1.951 | 1142     | 2               |

J value = .022432  $\pm$  .0000538

Total gas age =  $1142 \pm 5$  Ma

Plateau age =  $1155 \pm 5$  Ma

Sample et119 hornblende:

Table D1 (Continued)

| Step                 | Fraction        | <sup>40</sup> Ar/ <sup>39</sup> Ar | <sup>38</sup> Ar/ <sup>39</sup> Ar | <sup>37</sup> Ar/ <sup>39</sup> Ar | <sup>36</sup> Ar/ <sup>39</sup> Ar | $^{40}{\rm Ar}^{*}/^{39}{\rm Ar}$ | % atm   | Ca/K  | Age (Ma)    | $1\sigma$ error |
|----------------------|-----------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|---------|-------|-------------|-----------------|
| a4b-100              | .000            | 4406.852                           | 1.036                              | 4.649                              | .047                               | 4392.940                          | .316    | 4.649 | 9498        | 75              |
| a4b-200              | .000            | 283.946                            | 1.386                              | 4.983                              | .125                               | 246.932                           | 13.036  | 4.983 | 4455        | 108             |
| a4b-250              | .000            | 151.077                            | .942                               | 5.823                              | .221                               | 85.625                            | 43.324  | 5.823 | 2811        | 204             |
| a4b-300              | .000            | 51.434                             | .742                               | 6.561                              | .030                               | 42.588                            | 17.198  | 6.561 | 1899        | 192             |
| a4b-350              | .000            | 174.386                            | .945                               | 3.703                              | .028                               | 166.129                           | 4.735   | 3.703 | 3813        | 72              |
| a4b-400              | .000            | 49.056                             | 1.056                              | 4.980                              | .023                               | 42.204                            | 13.967  | 4.980 | 1889        | 147             |
| a4b-425              | .000            | 27.184                             | 1.382                              | 3.358                              | 044                                | 40.234                            | -48.07  | 3.358 | 1833        | 231             |
| a4b-450              | .000            | 32.014                             | 1.701                              | 5.613                              | .048                               | 17.744                            | 44.577  | 5.613 | 1037        | 537             |
| a4b-475              | .000            | 31.969                             | 1.589                              | 3.553                              | 044                                | 44.929                            | -4.538  | 3.553 | 1963        | 388             |
| a4b-500              | .000            | 30.699                             | 1.886                              | 1.887                              | 045                                | 44.087                            | -43.61  | 1.887 | 1940        | 196             |
| a4b-525              | .000            | 34.125                             | 2.074                              | 3.460                              | 021                                | 40.354                            | -18.254 | 3.46  | 1836        | 226             |
| a4b-550              | .000            | 24.772                             | 2.217                              | 3.291                              | 005                                | 26.326                            | -6.27   | 3.291 | 1384        | 274             |
| a4b-575              | .000            | 23.851                             | 2.431                              | 2.753                              | 011                                | 27.105                            | -13.643 | 2.753 | 1412        | 149             |
| a4b-60               | .001            | 27.277                             | 2.497                              | 3.090                              | 007                                | 29.471                            | -8.43   | 3.090 | 1495        | 103             |
| a4b-625              | .001            | 24.697                             | 2.795                              | 2.792                              | .002                               | 24.150                            | 2.215   | 2.792 | 1302        | 42              |
| a4b-650              | .002            | 23.756                             | 2.861                              | 2.770                              | .001                               | 23.594                            | .684    | 2.770 | 1280        | 26              |
| a4b-675              | .004            | 23.511                             | 2.885                              | 2.781                              | .000                               | 23.643                            | 562     | 2.781 | 1282        | 18              |
| a4b-700              | .006            | 23.740                             | 2.886                              | 2.741                              | .000                               | 23.621                            | .500    | 2.741 | 1281        | 10              |
| a4b-725              | .009            | 23.515                             | 2.875                              | 2.749                              | .000                               | 23.378                            | .585    | 2.749 | 1272        | 7               |
| a4b-750              | .012            | 23.729                             | 2.867                              | 2.741                              | .000                               | 23.735                            | 026     | 2.741 | 1286        | 5               |
| a4b-775              | .015            | 23.549                             | 2.869                              | 2.693                              | .000                               | 23.486                            | .266    | 2.693 | 1276        | 5               |
| a4b-800              | .017            | 23.969                             | 2.866                              | 2.725                              | .000                               | 23.906                            | .260    | 2.725 | 1292        | 4               |
| a4b-825              | .020            | 23.775                             | 2.871                              | 2.750                              | .000                               | 23.787                            | 048     | 2.750 | 1288        | 4               |
| a4b-850              | .022            | 23,544                             | 2.863                              | 2.716                              | .000                               | 23,585                            | 173     | 2.716 | 1280        | 3               |
| a4b-875              | .032            | 23,696                             | 2.851                              | 2.743                              | .000                               | 23.667                            | .120    | 2.743 | 1283        | 2               |
| a4b-900              | .042            | 23.627                             | 2.831                              | 2.732                              | .000                               | 23,766                            | 587     | 2.732 | 1287        | 2               |
| a4b-925              | .054            | 23.689                             | 2.821                              | 2.760                              | .000                               | 23.735                            | 195     | 2.760 | 1286        | 2               |
| a4b-950              | .065            | 23.748                             | 2.815                              | 2.732                              | .000                               | 23.789                            | 171     | 2.732 | 1288        | 1               |
| a4b-975              | 103             | 24.067                             | 2.820                              | 2.731                              | 000                                | 24,090                            | - 095   | 2.731 | 1300        | 1               |
| a4b-1000             | 101             | 23.989                             | 2.817                              | 2.723                              | .000                               | 23.984                            | 022     | 2.723 | 1295        | 1               |
| a4b-1050             | 140             | 24 047                             | 2.815                              | 2.725                              | .000                               | 24.062                            | - 062   | 2 735 | 1298        | 1               |
| a4b-1100             | 162             | 23 801                             | 2.813                              | 2.733                              | .000                               | 23.821                            | - 083   | 2.735 | 1290        | 0               |
| a4b-1150             | .102            | 23.001                             | 2.832                              | 2.741                              | .000                               | 23.021                            | - 156   | 2.742 | 1205        | 1               |
| a4b-1200             | .075            | 23.437                             | 2.846                              | 2.700                              | .000                               | 23.475                            | - 277   | 2.700 | 1270        | 3               |
| a40 1200             | 019             | 23.324                             | 2.856                              | 2.000                              | .000                               | 23.307                            | - 293   | 2.000 | 1272        | 3               |
| a4b-1300             | .012            | 23.303                             | 2.850                              | 2.760                              | .000                               | 23.433                            | - 499   | 2.700 | 1274        | 1               |
| a40-1400<br>a4b-1500 | .012            | 23.392                             | 2.860                              | 2.701                              | .000                               | 23.309                            | .499    | 2.701 | 1277        | 5               |
| a4b-1300             | .011            | 24.034                             | 2.804                              | 2.730                              | .000                               | 23.335                            | - 250   | 2.750 | 12/1        | 3               |
| a40-1750<br>a4b-2000 | .027            | 24.034                             | 2.852                              | 2.973                              | .000                               | 24.090                            | 239     | 3 509 | 1/37        | 13              |
| a40-2000             | .003            | 20.477                             | 2.880                              | 2.846                              | .002                               | 27.802                            | - 347   | 2.846 | 1437        | 13              |
| a40-2230             | .002            | 24.044                             | 2.827                              | 2.840                              | .000                               | 24.127                            | .347    | 2.840 | 1204        | 17              |
| a40-2300             | .001            | 23.381                             | 2.801                              | 2.800                              | .000                               | 12.055                            | .119    | 2.000 | 1294<br>816 | 100             |
| a40-3000             | .000            | 47 569                             | 2.002                              | 2.075                              | .033                               | 25.000                            | 42.390  | 2.075 | 1694        | 199             |
| a40-5500             | .000            | 47.308                             | 2.301                              | 2.073                              | .042                               | 35.239                            | 23.918  | 2.075 | 1604        | 338<br>427      |
| 40-4000              | 0.000           | 20.007                             | 2.839                              | 1.399                              | 032                                | 55.547                            | -30.084 | 1.399 | 1094        | 427             |
| J value =            | $.0438 \pm .00$ | $+ 2 M_{\odot}$                    |                                    |                                    |                                    |                                   |         |       |             |                 |
| Formula at 108       | ge = 1517       | $\pm$ 5 Ma                         |                                    |                                    |                                    |                                   |         |       |             |                 |
| Sample et108         | normbiende      | 42 502                             | 1 207                              | 1 720                              | 025                                | 51.009                            | 17.011  | 1 720 | 2121        | 202             |
| a2a-100              | .000            | 43.393                             | 1.207                              | 4.756                              | 023                                | 31.008                            | -17.011 | 4.756 | 2121        | 303             |
| a2a-200              | .001            | 69.717                             | .320                               | 4.456                              | .112                               | 30.000                            | 47.493  | 4.450 | 1/30        | 258             |
| a2a-250              | .000            | 28.758                             | .332                               | 3.075                              | 058                                | 45.914                            | -59.658 | 3.075 | 1992        | 255             |
| a2a-300              | .001            | 23.991                             | .402                               | 2.008                              | -0.013                             | 27.838                            | -16.036 | 2.008 | 1441        | 264             |
| a2a-350              | .001            | 24.505                             | .373                               | 1.568                              | 035                                | 34.944                            | -42.598 | 1.568 | 1678        | 288             |
| a2a-400              | .001            | 23.364                             | .493                               | 2.320                              | 024                                | 30.552                            | -30.769 | 2.320 | 1536        | 203             |
| a2a-425              | .001            | 27.650                             | .619                               | 2.055                              | 029                                | 36.261                            | -31.142 | 2.055 | 1719        | 265             |
| a2a-450              | .001            | 26.712                             | .754                               | 2.623                              | .005                               | 25.180                            | 5.735   | 2.623 | 1344        | 166             |
| a2a-475              | .001            | 25.660                             | .784                               | 2.880                              | 004                                | 26.826                            | -4.544  | 2.880 | 1405        | 142             |
| a2a-500              | .001            | 24.999                             | .802                               | 3.304                              | 001                                | 25.230                            | 925     | 3.304 | 1346        | 144             |
| a2a-525              | .002            | 22.857                             | .786                               | 2.760                              | 004                                | 23.950                            | -4.778  | 2.760 | 1297        | 79              |
| a2a-550              | .009            | 22.022                             | .769                               | 2.857                              | 001                                | 22.232                            | 955     | 2.857 | 1229        | 22              |
| a2a-575              | .037            | 21.170                             | .764                               | 2.950                              | .000                               | 21.210                            | 190     | 2.950 | 1188        | 5               |
| a2a-600              | .087            | 20.812                             | .764                               | 3.005                              | .000                               | 20.797                            | .072    | 3.005 | 1171        | 2               |

Table D1 (Continued)

| Step               | Fraction       | $^{40}\text{Ar}/^{39}\text{Ar}$ | $^{38}\mathrm{Ar}/^{39}\mathrm{Ar}$ | <sup>37</sup> Ar/ <sup>39</sup> Ar | <sup>36</sup> Ar/ <sup>39</sup> Ar | $^{40}{\rm Ar}^{*/^{39}}{\rm Ar}$ | % atm   | Ca/K   | Age (Ma) | $1\sigma$ error |
|--------------------|----------------|---------------------------------|-------------------------------------|------------------------------------|------------------------------------|-----------------------------------|---------|--------|----------|-----------------|
| a2a-625            | .143           | 20.726                          | .764                                | 2.995                              | .000                               | 20.720                            | .026    | 2.995  | 1168     | 2               |
| a2a-650            | .323           | 20.747                          | .756                                | 2.993                              | .000                               | 20.754                            | 036     | 2.993  | 1169     | 1               |
| a2a-675            | .113           | 20.682                          | .750                                | 2.940                              | .000                               | 20.630                            | .250    | 2.940  | 1164     | 3               |
| a2a-700            | .049           | 20.623                          | .743                                | 2.950                              | .000                               | 20.638                            | 076     | 2.950  | 1164     | 4               |
| a2a-725            | .021           | 20.774                          | .747                                | 2.959                              | .001                               | 20.591                            | .881    | 2.959  | 1162     | 7               |
| a2a-750            | .016           | 20.937                          | .750                                | 3.001                              | .000                               | 21.006                            | 332     | 3.001  | 1180     | 7               |
| a2a-775            | .009           | 20.868                          | .755                                | 2.933                              | .001                               | 20.607                            | 1.251   | 2.933  | 1163     | 17              |
| a2a-800            | .005           | 20.679                          | .760                                | 3.039                              | 002                                | 21.176                            | -2.404  | 3.039  | 1187     | 41              |
| a2a-825            | .005           | 20.920                          | .757                                | 3.179                              | .000                               | 20.973                            | 254     | 3.179  | 1178     | 30              |
| a2a-850            | .006           | 20.740                          | .759                                | 3.032                              | .000                               | 20.593                            | .710    | 3.032  | 1162     | 27              |
| a2a-875            | .005           | 20.820                          | .759                                | 3.094                              | .000                               | 20.936                            | 555     | 3.094  | 1177     | 29              |
| a2a-900            | .003           | 21.220                          | .775                                | 3.173                              | 001                                | 21.576                            | -1.680  | 3.173  | 1203     | 47              |
| a2a-925            | .003           | 21.206                          | .748                                | 2.968                              | 006                                | 23.092                            | -8.895  | 2.968  | 1264     | 50              |
| a2a-950            | .003           | 21.006                          | .744                                | 3.245                              | .005                               | 19.432                            | 7.495   | 3.245  | 1113     | 58              |
| a2a-975            | .003           | 20.878                          | .735                                | 2.897                              | 002                                | 21.490                            | -2.929  | 2.897  | 1199     | 52              |
| a2a-1000           | .004           | 21.263                          | .751                                | 3.101                              | 002                                | 21.784                            | -2.450  | 3.101  | 1211     | 32              |
| a2a-1050           | .006           | 20.973                          | .766                                | 2.992                              | 002                                | 21.561                            | -2.803  | 2.992  | 1202     | 22              |
| a2a-1100           | .010           | 21.258                          | .760                                | 2.983                              | .000                               | 21.349                            | 430     | 2.983  | 1194     | 16              |
| a2a-1150           | .008           | 21.318                          | .762                                | 2.993                              | .000                               | 21.267                            | .239    | 2.993  | 1190     | 20              |
| a2a-1200           | .010           | 21.335                          | .755                                | 2.916                              | 001                                | 21.607                            | -1.273  | 2.916  | 1204     | 18              |
| a2a-1300           | .009           | 21.403                          | .751                                | 2.890                              | .001                               | 21.177                            | 1.058   | 2.890  | 1187     | 14              |
| a2a-1400           | .016           | 21.070                          | .742                                | 3.015                              | .001                               | 20.847                            | 1.057   | 3.015  | 1173     | 14              |
| a2a-1500           | .010           | 20.824                          | .746                                | 3.025                              | .001                               | 20.386                            | 2.103   | 3.025  | 1154     | 13              |
| a2a-1750           | .039           | 20.767                          | .748                                | 2.951                              | .000                               | 20.806                            | 189     | 2.951  | 1171     | 5               |
| a2a-2000           | .016           | 20.736                          | .739                                | 2.947                              | .001                               | 20.483                            | 1.218   | 2.947  | 1158     | 11              |
| a2a-2250           | .009           | 21.372                          | .743                                | 2.901                              | .000                               | 21.274                            | .458    | 2.901  | 1191     | 16              |
| a2a-2500           | .003           | 22.610                          | .738                                | 2.853                              | .001                               | 22.420                            | .841    | 2.853  | 1237     | 57              |
| a2a-3000           | .002           | 22.793                          | ./14                                | 2.649                              | 002                                | 23.502                            | -3.111  | 2.649  | 1280     | 69<br>20        |
| a2a-3500           | .004           | 21.428                          | .728                                | 2.853                              | .003                               | 20.652                            | 3.624   | 2.853  | 1165     | 39              |
| a2a-4000           | .001           | 22.433                          | .705                                | 2.802                              | .001                               | 22.110                            | 1.414   | 2.802  | 1225     | 128             |
| J value =          | $.043935 \pm$  | $-2 M_{\odot}$                  |                                     |                                    |                                    |                                   |         |        |          |                 |
| Distance and       | ge = 11/3      | $\pm 5 Ma$                      |                                     |                                    |                                    |                                   |         |        |          |                 |
| Fiateau age        | $z = 1100 \pm$ | 5 Ma                            |                                     |                                    |                                    |                                   |         |        |          |                 |
| 252 100            |                | 24.260                          | 1 833                               | 5 288                              | 108                                | _7 722                            | 131 831 | 5 288  | -742     | 1032            |
| a5a-100            | .000           | 24.200                          | 1.855                               | 36.485                             | .108                               | -30.454                           | 225 607 | 36.485 | _0080    | 1052            |
| a5a-200<br>a5a-250 | .000           | 30.841                          | .408                                | 20.776                             | .185                               | -92 240                           | 399.082 | 20.776 | -18485   | 1380            |
| a5a-300            | .000           | 31 452                          | 568                                 | 30 344                             | 234                                | -37.625                           | 219 629 | 30 344 | -21602   | 3166            |
| a5a-350            | .000           | 25.915                          | 331                                 | 7 343                              | 214                                | -37.025                           | 244 571 | 7 343  | -21240   | 2670            |
| a5a-400            | .000           | 30 162                          | 569                                 | 2 256                              | 038                                | 19.079                            | 36 747  | 2 256  | 1093     | 1273            |
| a5a-425            | .000           | 17 116                          | 1.098                               | 080                                | 030                                | 8 211                             | 52 029  | 080    | 553      | 3494            |
| a5a-450            | .000           | 41.189                          | .731                                | 3.504                              | -079                               | 64.567                            | -56.757 | 3 504  | 2418     | 883             |
| a5a-475            | .000           | 41.977                          | .733                                | 4 087                              | .000                               | 41.836                            | 337     | 4 087  | 1875     | 787             |
| a5a-500            | .001           | 31.899                          | 612                                 | 3,398                              | .009                               | 29.348                            | 7,997   | 3 398  | 1488     | 259             |
| a5a-525            | .001           | 29.836                          | .532                                | 3.253                              | .008                               | 27.473                            | 7.921   | 3.253  | 1422     | 293             |
| a5a-550            | .001           | 29.458                          | .500                                | 2.880                              | 023                                | 36.275                            | -23.139 | 2.880  | 1713     | 121             |
| a5a-575            | .001           | 27.910                          | .525                                | 2.837                              | 026                                | 35,609                            | -27.581 | 2.837  | 1692     | 99              |
| a5a-600            | .002           | 27.298                          | .535                                | 3.116                              | 012                                | 30.980                            | -13.485 | 3.116  | 1544     | 68              |
| a5a-625            | .007           | 26.441                          | .494                                | 3.159                              | 006                                | 28.138                            | -6.416  | 3.159  | 1446     | 15              |
| a5a-650            | .021           | 26.123                          | .488                                | 3.179                              | 001                                | 26.504                            | -1.459  | 3.179  | 1387     | 6               |
| a5a-675            | .038           | 25.798                          | .483                                | 3.207                              | 001                                | 26.089                            | -1.126  | 3.207  | 1372     | 6               |
| a5a-700            | .064           | 25.822                          | .482                                | 3.217                              | 001                                | 25.999                            | 687     | 3.217  | 1369     | 3               |
| a5a-725            | .126           | 25.970                          | .484                                | 3.203                              | .000                               | 25.921                            | .190    | 3.203  | 1366     | 2               |
| a5a-750            | .119           | 25.929                          | .480                                | 3.201                              | .000                               | 25.946                            | 065     | 3.201  | 1367     | 3               |
| a5a-775            | .106           | 25.984                          | .483                                | 3.231                              | .000                               | 25.975                            | .035    | 3.231  | 1368     | 2               |
| a5a-800            | .050           | 26.106                          | .490                                | 3.244                              | .000                               | 26.092                            | .056    | 3.244  | 1372     | 4               |
| a5a-825            | .093           | 25.873                          | .483                                | 3.240                              | .000                               | 25.945                            | 277     | 3.240  | 1367     | 2               |
| a5a-850            | .064           | 26.009                          | .488                                | 3.271                              | 001                                | 26.232                            | 861     | 3.271  | 1377     | 5               |
| a5a-875            | .141           | 25.757                          | .487                                | 3.240                              | .000                               | 25.839                            | 319     | 3.240  | 1363     | 2               |
| a5a-900            | .009           | 26.294                          | .492                                | 3.364                              | 005                                | 27.680                            | -5.272  | 3.364  | 1430     | 23              |
| a5a-925            | .008           | 26.087                          | .476                                | 3.343                              | 002                                | 26.762                            | -2.587  | 3.343  | 1397     | 27              |

Table D1 (Continued)

| Step               | Fraction       | $^{40}\text{Ar}/^{39}\text{Ar}$ | <sup>38</sup> Ar/ <sup>39</sup> Ar | $^{37}\mathrm{Ar}/^{39}\mathrm{Ar}$ | $^{36}\text{Ar}/^{39}\text{Ar}$ | $^{40}{\rm Ar}^{*/^{39}}{\rm Ar}$ | % atm         | Ca/K   | Age (Ma) | $1\sigma$ error |
|--------------------|----------------|---------------------------------|------------------------------------|-------------------------------------|---------------------------------|-----------------------------------|---------------|--------|----------|-----------------|
| a5a-950            | .009           | 26.023                          | .486                               | 3.244                               | 004                             | 27.259                            | -4.750        | 3.244  | 1415     | 24              |
| a5a-975            | .004           | 25.990                          | .488                               | 3.374                               | 007                             | 27.915                            | -7.407        | 3.374  | 1438     | 70              |
| a5a-1000           | .008           | 25.827                          | .486                               | 3.484                               | 005                             | 27.276                            | -5.609        | 3.484  | 1415     | 27              |
| a5a-1050           | .011           | 26.249                          | .489                               | 3.481                               | .000                            | 26.341                            | 348           | 3.481  | 1381     | 15              |
| a5a-1100           | .013           | 25.360                          | .500                               | 3.411                               | .001                            | 25.207                            | .602          | 3.411  | 1339     | 15              |
| a5a-1150           | .010           | 25.647                          | .484                               | 3.425                               | .002                            | 25.111                            | 2.093         | 3.425  | 1336     | 20              |
| a5a-1200           | .010           | 25.700                          | .488                               | 3.456                               | .002                            | 25.110                            | 2.297         | 3.456  | 1336     | 21              |
| a5a-1300           | .017           | 25.952                          | .496                               | 3.434                               | .001                            | 25.641                            | 1.197         | 3.434  | 1356     | 11              |
| a5a-1400           | .015           | 25.224                          | .518                               | 3.391                               | .001                            | 25.067                            | .623          | 3.391  | 1334     | 13              |
| a5a-1500           | .019           | 25.452                          | .501                               | 3.338                               | .000                            | 25.356                            | .377          | 3.338  | 1345     | 15              |
| a5a-1750           | .012           | 25.370                          | .508                               | 3.932                               | .001                            | 25.110                            | 1.024         | 3.932  | 1336     | 17              |
| a5a-2000           | .005           | 24.340                          | .549                               | 3.690                               | 003                             | 25.318                            | -4.021        | 3.690  | 1343     | 31              |
| a5a-2250           | .011           | 25.483                          | .518                               | 4.833                               | .000                            | 25.338                            | .569          | 4.833  | 1344     | 13              |
| a5a-2500           | .002           | 25.909                          | .588                               | 14.567                              | 013                             | 29.847                            | -15.196       | 14.567 | 1505     | 85              |
| a5a-2500           | .001           | 26.978                          | .706                               | 22.808                              | 014                             | 31.234                            | -15.774       | 22.808 | 1552     | 199             |
| a5a-4000           | .001           | 27.077                          | .525                               | 4.507                               | .008                            | 24.815                            | 8.354         | 4.507  | 1325     | 113             |
| J value =          | .043675 ±      | .000129                         |                                    |                                     |                                 |                                   |               |        |          |                 |
| Total gas a        | age = 1368     | ± 3 Ma                          |                                    |                                     |                                 |                                   |               |        |          |                 |
| Plateau ag         | $e = 1367 \pm$ | 3 Ma                            |                                    |                                     |                                 |                                   |               |        |          |                 |
| Sample et120       | 5 hornblende:  | 07.557                          | 6.004                              | 4 401                               | 200                             | 26.000                            | <b>(2</b> 000 | 4 401  | 1705     | 104             |
| a6a-100            | .000           | 97.557                          | 6.284                              | 4.421                               | .208                            | 36.098                            | 62.999        | 4.421  | 1705     | 184             |
| a6a-200            | .000           | 26.303                          | 3.242                              | 1.875                               | .019                            | 20.719                            | 21.229        | 1.875  | 1161     | 100             |
| a6a-250            | .001           | 17.162                          | .120                               | .685                                | .025                            | 9.918                             | 42.212        | .685   | 648      | 97              |
| a6a-300            | .001           | 13.723                          | .027                               | .885                                | .009                            | 10.945                            | 20.245        | .885   | 703      | 76              |
| a6a-350            | .001           | 24.874                          | .031                               | .608                                | .005                            | 23.353                            | 6.116         | .608   | 1266     | 71              |
| a6a-400            | .001           | 17.302                          | .030                               | .933                                | .009                            | 14.591                            | 15.672        | .933   | 888      | 44              |
| a6a-425            | .001           | 15.205                          | .015                               | .577                                | .003                            | 14.175                            | 6.776         | .577   | 868      | 49              |
| a6a-450            | .001           | 16.089                          | .017                               | .607                                | .002                            | 15.404                            | 4.257         | .607   | 926      | 66<br>72        |
| a6a-4/5            | .001           | 15.193                          | .017                               | .952                                | .000                            | 15.148                            | .301          | .952   | 914      | 73              |
| aba-500            | .001           | 15.390                          | .021                               | 1.189                               | .004                            | 14.259                            | 7.350         | 1.189  | 872      | 70              |
| aba-525            | .001           | 15.932                          | .042                               | 1.502                               | 004                             | 17.020                            | -0.829        | 1.502  | 1001     | 55<br>50        |
| aba-550            | .001           | 10.410                          | .032                               | 2 109                               | 003                             | 17.704                            | -8.248        | 2 109  | 1054     | 32<br>70        |
| aba-373            | .001           | 10.077                          | .092                               | 2.198                               | 005                             | 17.081                            | -3.339        | 2.198  | 1092     | 79              |
| a6a-600            | .001           | 19.035                          | .110                               | 2.731                               | .000                            | 17.169                            | 9.782         | 2.731  | 1146     | /1              |
| a0a-023            | .001           | 20.729                          | .130                               | 2.911                               | .001                            | 20.370                            | 1.734         | 2.911  | 1140     | 42              |
| a0a-050            | .001           | 21.505                          | .140                               | 3.773                               | .001                            | 21.307                            | 3 001         | 3.775  | 1105     | 42<br>20        |
| a6a-075            | .002           | 23.208                          | .152                               | 3.003                               | - 001                           | 22.491                            | - 861         | 3.703  | 1252     | 29              |
| a0a-700<br>262-725 | .002           | 22.907                          | .155                               | 4 002                               | .001                            | 23.105                            | 2 100         | 4 002  | 1259     | 32              |
| a6a-750            | .002           | 23.554                          | .100                               | 4.002                               | .002                            | 23.400                            | 4 924         | 4.002  | 1200     | 25              |
| a6a-775            | .003           | 24.001                          | 169                                | 4 001                               | .004                            | 23.447                            | 2 766         | 4 001  | 1270     | 25              |
| a6a-800            | 004            | 24.628                          | 170                                | 4 097                               | 001                             | 24 409                            | 887           | 4 097  | 1307     | 20              |
| a6a-825            | 003            | 24 236                          | 171                                | 4 143                               | .000                            | 24 190                            | 191           | 4 143  | 1299     | 20              |
| a6a-850            | .005           | 24.236                          | .174                               | 4.073                               | .000                            | 23.830                            | 1.675         | 4 073  | 1285     | 7               |
| a6a-875            | 008            | 25.283                          | 175                                | 4,197                               | 001                             | 24.971                            | 1.234         | 4 197  | 1328     | 7               |
| a6a-900            | .014           | 25.251                          | .181                               | 4.228                               | .001                            | 24.979                            | 1.079         | 4.228  | 1329     | 6               |
| a6a-925            | 060            | 24 920                          | 175                                | 4.135                               | .000                            | 24.859                            | 246           | 4 135  | 1324     | 1               |
| a6a-950            | .091           | 24.790                          | .171                               | 4.084                               | .000                            | 24.780                            | .040          | 4.084  | 1321     | 1               |
| a6a-975            | .090           | 24.830                          | .167                               | 4.063                               | .000                            | 24,794                            | .145          | 4.063  | 1322     | 1               |
| a6a-1000           | .053           | 24.749                          | .166                               | 4.084                               | .000                            | 24.751                            | 006           | 4.084  | 1320     | 1               |
| a6a-1050           | .141           | 24.797                          | .165                               | 4.081                               | .000                            | 24,809                            | 050           | 4.081  | 1322     | 1               |
| a6a-1100           | .247           | 24.999                          | .166                               | 4.077                               | .000                            | 25.004                            | 022           | 4.077  | 1329     | 3               |
| аба-1150           | .129           | 24.774                          | .168                               | 4.058                               | .000                            | 24.768                            | .024          | 4.058  | 1321     | 1               |
| a6a-1200           | .025           | 24.730                          | .168                               | 4.134                               | .000                            | 24.687                            | .175          | 4.134  | 1317     | 2               |
| аба-1300           | .020           | 24.326                          | .169                               | 4.650                               | .000                            | 24.307                            | .080          | 4.650  | 1303     | 3               |
| аба-1400           | .017           | 24.741                          | .176                               | 4.968                               | .000                            | 24.595                            | .592          | 4.968  | 1314     | 4               |
| аба-1500           | .014           | 25.026                          | .175                               | 4.567                               | .000                            | 24.890                            | .544          | 4.567  | 1325     | 6               |
| a6a-1750           | .017           | 24.858                          | .178                               | 4.929                               | .000                            | 24.800                            | .235          | 4.929  | 1322     | 3               |
| a6a-2000           | .011           | 24.732                          | .180                               | 4.867                               | .000                            | 24.749                            | 067           | 4.867  | 1320     | 6               |
| a6a-2250           | .005           | 24.800                          | .196                               | 5.963                               | 001                             | 25.090                            | -1.168        | 5.963  | 1333     | 7               |
| a6a-2500           | .010           | 24.996                          | .192                               | 5.919                               | .000                            | 24.961                            | .140          | 5.919  | 1328     | 5               |

Table D1 (Continued)

| Step               | Fraction                                    | <sup>40</sup> Ar/ <sup>39</sup> Ar | <sup>38</sup> Ar/ <sup>39</sup> Ar | <sup>37</sup> Ar/ <sup>39</sup> Ar | <sup>36</sup> Ar/ <sup>39</sup> Ar | 40Ar*/39Ar       | % atm    | Ca/K   | Age (Ma) | 1σ error |
|--------------------|---------------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------|----------|--------|----------|----------|
| a6a-3000           | .009                                        | 24.851                             | .192                               | 6.314                              | .000                               | 24.777           | .299     | 6.314  | 1321     | 7        |
| a6a-3500           | .002                                        | 25.260                             | .264                               | 11.120                             | .000                               | 25.190           | .277     | 11.120 | 1336     | 27       |
| a6a-4000           | .000                                        | 26.707                             | .162                               | 6.922                              | 029                                | 35.285           | -32.116  | 6.922  | 1680     | 218      |
| J value =          | $.043573 \pm$                               | .00012                             |                                    |                                    |                                    |                  |          |        |          |          |
| Total gas a        | ge = 1319                                   | ± 3 Ma                             |                                    |                                    |                                    |                  |          |        |          |          |
| Plateau age        | $e = 1321 \pm$                              | 3 Ma                               |                                    |                                    |                                    |                  |          |        |          |          |
| Sample et113       | hornblende                                  | :                                  |                                    |                                    |                                    |                  |          |        |          |          |
| a0a-100            | .001                                        | 15.225                             | .398                               | 4.630                              | .003                               | 14.420           | 5.293    | 4.630  | 887      | 195      |
| a0a-200            | .001                                        | 20.886                             | .164                               | 1.899                              | .003                               | 20.138           | 3.580    | 1.899  | 1145     | 179      |
| a0a-250            | .000                                        | 11.030                             | .164                               | 6.442                              | 024                                | 18.043           | -63.575  | 6.442  | 1055     | 600      |
| a0a-300            | .000                                        | 10.590                             | .256                               | 2.488                              | 024                                | 17.683           | -66.971  | 2.488  | 1039     | 490      |
| a0a-350            | .000                                        | 12.022                             | .298                               | 1.406                              | .018                               | 6.727            | 44.043   | 1.406  | 468      | 778      |
| a0a-400            | .000                                        | 8.960                              | .448                               | 1.505                              | .038                               | -2.413           | 126.933  | 1.505  | -203     | 1540     |
| a0a-425            | .000                                        | 22.010                             | .556                               | 2.499                              | 225                                | 88.569           | -302.405 | 2.499  | 2867     | 546      |
| a0a-450            | .000                                        | 19.929                             | .829                               | 044                                | 0/3                                | 41.604           | -108.761 | 044    | 18/8     | 621      |
| a0a-475            | .000                                        | 17 226                             | .627                               | .434                               | 031                                | 31.003           | -41.481  | .434   | 1373     | 402      |
| a0a-500            | .000                                        | 17.230                             | ./1/                               | .557                               | 098                                | 40.312           | -108.088 | .337   | 2006     | 402      |
| a0a-525            | .000                                        | 22.830                             | 1.001                              | 5.544<br>4.450                     | 042                                | 55.225<br>28.847 | -34.100  | 3.344  | 1090     | 000      |
| a0a-550            | .000                                        | 25.945                             | 1.050                              | 4.430                              | 017                                | 20.047           | -20.485  | 4.450  | 14/9     | 220      |
| a0a-575            | .001                                        | 25.292                             | 1.104                              | 3.040                              | 005                                | 20.001           | -5.415   | 3.040  | 1401     | 200      |
| a0a-600            | .001                                        | 25.060                             | 1.041                              | 2.490                              | .001                               | 23.472           | .070     | 2.490  | 1201     | 105      |
| a0a-623            | .002                                        | 25.516                             | 1.050                              | 2.079                              | .002                               | 22.644           | 2.808    | 2.879  | 1230     | 70<br>52 |
| a0a-630            | .005                                        | 22.495                             | .969                               | 2.692                              | 004                                | 23.032           | -3.000   | 2.692  | 1207     | 20       |
| a0a-675            | .008                                        | 21.139                             | .930                               | 2.010                              | .001                               | 20.870           | 2 002    | 2.010  | 11/0     | 20       |
| a0a-700            | .012                                        | 21.333                             | .951                               | 2.071                              | .002                               | 20.092           | 5.005    | 2.071  | 1109     | 21<br>15 |
| a0a - 723          | .010                                        | 21.248                             | .951                               | 2.097                              | .000                               | 21.240           | 101      | 2.097  | 1191     | 10       |
| a0a-730<br>a0a-775 | .017                                        | 21.410                             | .944<br>0/1                        | 2.799                              | .000                               | 21.300           | -420     | 2.799  | 1197     | 19       |
| a0a-775<br>a0a-800 | .020                                        | 21.155                             | .)41                               | 2.732                              | .000                               | 21.224           | - 001    | 2.73)  | 1191     | 12       |
| a0a-800            | .052                                        | 21.104                             | 945                                | 2.705                              | .000                               | 20.975           | 433      | 2.705  | 1180     | 5        |
| a0a-850            | .005                                        | 21.000                             | 942                                | 2.721                              | .000                               | 21.157           | 243      | 2.721  | 1188     | 4        |
| a0a-875            | 329                                         | 21.209                             | 937                                | 2.703                              | .000                               | 21.137           | .243     | 2.705  | 1191     | 1        |
| a0a-900            | 185                                         | 21.167                             | .934                               | 2.711                              | .000                               | 21.167           | .000     | 2.711  | 1188     | 2        |
| a0a-925            | .085                                        | 21.105                             | .936                               | 2.734                              | .000                               | 21.099           | .030     | 2.734  | 1185     | 4        |
| a0a-950            | .010                                        | 21.289                             | .929                               | 2.729                              | .003                               | 20.495           | 3.732    | 2.729  | 1160     | 17       |
| a0a-975            | .004                                        | 21.101                             | .961                               | 2.635                              | .003                               | 20.125           | 4.626    | 2.635  | 1145     | 47       |
| a0a-1000           | .004                                        | 21.013                             | .962                               | 2.768                              | .003                               | 20.201           | 3.864    | 2.768  | 1148     | 49       |
| a0a-1050           | .011                                        | 20.858                             | .957                               | 2.574                              | 001                                | 21.095           | -1.136   | 2.574  | 1185     | 23       |
| a0a-1100           | .007                                        | 21.326                             | .944                               | 2.710                              | .002                               | 20.834           | 2.308    | 2.710  | 1174     | 27       |
| a0a-1150           | .012                                        | 20.958                             | .945                               | 2.669                              | .001                               | 20.643           | 1.506    | 2.669  | 1167     | 19       |
| a0a-1200           | .025                                        | 20.902                             | .942                               | 2.692                              | .001                               | 20.684           | 1.042    | 2.692  | 1168     | 9        |
| a0a-1300           | .021                                        | 21.083                             | .940                               | 2.741                              | .001                               | 20.701           | 1.809    | 2.741  | 1169     | 10       |
| a0a-1400           | .014                                        | 21.188                             | .942                               | 2.779                              | .002                               | 20.567           | 2.930    | 2.779  | 1163     | 14       |
| a0a-1500           | .009                                        | 21.022                             | .920                               | 2.836                              | .000                               | 20.991           | .150     | 2.836  | 1181     | 27       |
| a0a-1750           | .014                                        | 20.773                             | .925                               | 2.759                              | .001                               | 20.530           | 1.173    | 2.759  | 1162     | 16       |
| a0a-2000           | .007                                        | 21.077                             | .939                               | 2.896                              | .003                               | 20.269           | 3.836    | 2.896  | 1151     | 24       |
| a0a-2250           | .006                                        | 21.156                             | .957                               | 2.948                              | .000                               | 21.288           | 624      | 2.948  | 1193     | 29       |
| a0a-2500           | .005                                        | 20.821                             | .942                               | 2.903                              | .008                               | 18.475           | 11.269   | 2.903  | 1074     | 42       |
| a0a-3000           | .002                                        | 20.734                             | .944                               | 3.669                              | .006                               | 18.879           | 8.948    | 3.669  | 1092     | 116      |
| a0a-3500           | .002                                        | 21.031                             | .963                               | 3.167                              | .008                               | 18.544           | 11.822   | 3.167  | 1077     | 108      |
| a0a-4000           | .001                                        | 20.583                             | .911                               | 3.494                              | .026                               | 12.817           | 37.729   | 3.494  | 807      | 187      |
| J value =          | $.044037 \hspace{0.2cm} \pm \hspace{0.2cm}$ | .000176                            |                                    |                                    |                                    |                  |          |        |          |          |
| Total gas a        | ge = 1185                                   | $\pm$ 4 Ma                         |                                    |                                    |                                    |                  |          |        |          |          |
| Plateau age        | $e = 1187 \pm$                              | 3 Ma                               |                                    |                                    |                                    |                  |          |        |          |          |
| Sample et125       | hornblende                                  | :                                  |                                    |                                    |                                    |                  |          |        |          |          |
| c0b-100            | .002                                        | 22.706                             | .895                               | 2.260                              | 072                                | 44.047           | -93.990  | 2.260  | 1242     | 290      |
| c0b-200            | .002                                        | 70.427                             | 026                                | 2.470                              | .099                               | 41.115           | 41.620   | 2.470  | 1181     | 582      |
| c0b-275            | .011                                        | 40.912                             | .072                               | 3.236                              | 003                                | 41.759           | -2.069   | 3.236  | 1195     | 60       |
| c0b-350            | .111                                        | 39.928                             | .100                               | 3.435                              | 001                                | 40.079           | 377      | 3.435  | 1159     | 8        |
| c0b-400            | .532                                        | 40.136                             | .102                               | 3.453                              | .000                               | 40.217           | 202      | 3.453  | 1162     | 2        |
| c0b-410            | .047                                        | 40.069                             | .095                               | 3.492                              | 002                                | 40.640           | -1.424   | 3.492  | 1171     | 15       |

Table D1 (Continued)

| Step          | Fraction      | $^{40}\text{Ar}/^{39}\text{Ar}$ | <sup>38</sup> Ar/ <sup>39</sup> Ar | <sup>37</sup> Ar/ <sup>39</sup> Ar | $^{36}\text{Ar}/^{39}\text{Ar}$ | $^{40}{\rm Ar}^{*}/^{39}{\rm Ar}$ | % atm  | Ca/K           | Age (Ma) | $1\sigma$ error |
|---------------|---------------|---------------------------------|------------------------------------|------------------------------------|---------------------------------|-----------------------------------|--------|----------------|----------|-----------------|
| c0b-430       | .067          | 39.916                          | .093                               | 3.433                              | 001                             | 40.315                            | -1.001 | 3.433          | 1164     | 14              |
| c0b-480       | .084          | 39.494                          | .096                               | 3.634                              | 002                             | 40.085                            | -1.497 | 3.634          | 1159     | 8               |
| c0b-530       | .033          | 40.019                          | .104                               | 4.323                              | .009                            | 37.406                            | 6.529  | 4.323          | 1101     | 39              |
| c0b-630       | .047          | 41.488                          | .103                               | 3.793                              | .001                            | 41.223                            | .641   | 3.793          | 1183     | 25              |
| c0b-1500      | .065          | 40.218                          | .106                               | 3.912                              | .003                            | 39.308                            | 2.263  | 3.912          | 1143     | 20              |
| J value $=$   | $.022485 \pm$ | .0000643                        |                                    |                                    |                                 |                                   |        |                |          |                 |
| Total gas ag  | ge = 1160     | ± 4 Ma                          |                                    |                                    |                                 |                                   |        |                |          |                 |
| Plateau age   | $= 1162 \pm$  | 3 Ma                            |                                    |                                    |                                 |                                   |        |                |          |                 |
| Sample et118  | hornblende:   |                                 |                                    |                                    |                                 |                                   |        |                |          |                 |
| c5b-625       | .594          | 41.546                          | .148                               | 2.534                              | .000                            | 41.442                            | .252   | 2.534          | 1184     | 1               |
| c5b-700       | .137          | 40.860                          | .130                               | 2.261                              | .000                            | 40.846                            | .035   | 2.261          | 1172     | 4               |
| c5b-775       | .049          | 40.585                          | .121                               | 1.988                              | .002                            | 40.127                            | 1.128  | 1.988          | 1157     | 9               |
| c5b-850       | .096          | 40.152                          | .124                               | 2.061                              | .001                            | 39.760                            | .976   | 2.061          | 1149     | 5               |
| C5B-925       | .045          | 40.437                          | .132                               | 2.252                              | .001                            | 40.073                            | .900   | 2.252          | 1156     | 10              |
| C5B-1000      | .025          | 42.132                          | .145                               | 2.472                              | 001                             | 42.324                            | 456    | 2.472          | 1203     | 16              |
| C5B-1200      | .033          | 41.585                          | .140                               | 2.525                              | .003                            | 40.745                            | 2.024  | 2.525          | 1170     | 10              |
| C5B-1500      | .017          | 42.524                          | .121                               | 2.209                              | .003                            | 41.038                            | 2.084  | 2.209          | 1189     | 27              |
|               | .005          | 40.313                          | .132                               | 2.300                              | 001                             | 40.850                            | //8    | 2.300          | 1172     | 12              |
| J value =     | $.022390 \pm$ | $\pm 2 M_{\odot}$               |                                    |                                    |                                 |                                   |        |                |          |                 |
| MISS belog 30 | ge = 11/7     | ± ∠ IVIa<br>le:                 |                                    |                                    |                                 |                                   |        |                |          |                 |
| Bower         | 5 nornolend   | ie.                             |                                    |                                    |                                 |                                   |        |                |          |                 |
| 100           | 000           | 36 901                          | 388                                | 1 781                              | 087                             | 11 252                            | 69 507 | 4 781          | 738      | 210             |
| 200           | .000          | 58 111                          | 189                                | 4.701<br>8.106                     | 106                             | 26.818                            | 53 851 | 9.106          | 1427     | 171             |
| 250           | .000          | 56 918                          | 070                                | 8 759                              | .100                            | 35 752                            | 37 188 | 8 759          | 1729     | 125             |
| 300           | .000          | 49 381                          | 058                                | 8 832                              | .072                            | 30 539                            | 38 157 | 8 832          | 1559     | 125             |
| 350           | .000          | 32 369                          | .030                               | 9 173                              | 055                             | 16.013                            | 50 531 | 9.173          | 978      | 324             |
| 400           | .000          | 28.025                          | 034                                | 11 457                             | 015                             | 23.528                            | 16 044 | 11 457         | 1302     | 204             |
| 425           | .000          | 25,908                          | 028                                | 10.262                             | 020                             | 20.094                            | 22.442 | 10.262         | 1161     | 194             |
| 450           | .000          | 25.414                          | .022                               | 9.790                              | .000                            | 25.288                            | .495   | 9.790          | 1370     | 57              |
| 475           | .001          | 25.422                          | .030                               | 8.669                              | 003                             | 26.309                            | -3.489 | 8.669          | 1408     | 88              |
| 500           | .001          | 24.957                          | .028                               | 7.717                              | .003                            | 24.114                            | 3.380  | 7.717          | 1325     | 44              |
| 525           | .001          | 24.801                          | .023                               | 6.864                              | .002                            | 24.250                            | 2.224  | 6.864          | 1330     | 30              |
| 550           | .003          | 24.156                          | .023                               | 6.410                              | .002                            | 23.704                            | 1.869  | 6.410          | 1309     | 12              |
| 575           | .007          | 23.718                          | .022                               | 5.884                              | .000                            | 23.653                            | .276   | 5.884          | 1307     | 10              |
| 600           | .016          | 23.640                          | .022                               | 5.766                              | .000                            | 23.686                            | 196    | 5.766          | 1308     | 4               |
| 625           | .041          | 23.683                          | .023                               | 5.811                              | .000                            | 23.707                            | 100    | 5.811          | 1309     | 2               |
| 650           | .087          | 23.586                          | .022                               | 5.776                              | .000                            | 23.610                            | 103    | 5.776          | 1305     | 1               |
| 675           | .107          | 23.551                          | .023                               | 5.757                              | .000                            | 23.574                            | 096    | 5.757          | 1304     | 1               |
| 700           | .139          | 23.469                          | .023                               | 5.753                              | .000                            | 23.495                            | 109    | 5.753          | 1300     | 1               |
| 725           | .143          | 23.491                          | .022                               | 5.815                              | .000                            | 23.551                            | 256    | 5.815          | 1303     | 1               |
| 750           | .096          | 23.646                          | .023                               | 5.814                              | .000                            | 23.713                            | 283    | 5.814          | 1309     | 1               |
| 775           | .067          | 23.680                          | .023                               | 5.919                              | .000                            | 23.760                            | 338    | 5.919          | 1311     | 2               |
| 800           | .042          | 23.619                          | .024                               | 5.945                              | .000                            | 23.704                            | 359    | 5.945          | 1309     | 3               |
| 825           | .034          | 23.803                          | .023                               | 5.992                              | 001                             | 23.965                            | 679    | 5.992          | 1319     | 3               |
| 850           | .029          | 23.704                          | .024                               | 6.025                              | .000                            | 23.779                            | 313    | 6.025          | 1312     | 2               |
| 875           | .019          | 23.754                          | .025                               | 6.160                              | .000                            | 23.817                            | 263    | 6.160          | 1313     | 5               |
| 900           | .015          | 23.662                          | .026                               | 6.331                              | .000                            | 23.670                            | 032    | 6.331          | 1307     | 5               |
| 925           | .012          | 23.696                          | .028                               | 6.552                              | .000                            | 23.565                            | .552   | 6.552          | 1303     | /               |
| 950           | .008          | 24.015                          | .027                               | 6.346                              | .000                            | 24.105                            | 3/4    | 6.346          | 1324     | 8               |
| 973           | .000          | 23.044                          | .028                               | 0.740                              | .000                            | 23.300                            | .237   | 0.740          | 1304     | 0               |
| 1000          | .005          | 23.012                          | .050                               | 7.235                              | 001                             | 23.792                            | 762    | 7.235          | 1312     | 10              |
| 1000          | .007          | 23.0/8                          | .051                               | 8 200                              | .000                            | 23.932                            | 511    | 8 200          | 1310     | /               |
| 1150          | .007          | 23.013                          | .041                               | 0.290<br>6.736                     | .000                            | 23.023                            | -1.031 | 0.290<br>6 736 | 1300     | 97              |
| 1200          | .009          | 23.034                          | .050                               | 7 162                              | .001                            | 23.970                            | 020    | 7 462          | 1319     | 6               |
| 1200          | 000           | 23.139                          | 030                                | 7.402<br>8.653                     | .000                            | 23.749                            | .039   | 8 652          | 1310     | 7               |
| 1400          | 004           | 23.755<br>23.566                | 033                                | 7 736                              | - 001                           | 23.091                            | -1 727 | 7 736          | 1300     | 15              |
| 1500          | .005          | 23 573                          | 039                                | 8.552                              | - 001                           | 23.960                            | -1.642 | 8.552          | 1319     | 8               |
| 1750          | .008          | 23.620                          | .031                               | 7.136                              | .001                            | 23.432                            | .800   | 7.136          | 1298     | 6               |
| 2000          | .007          | 23.578                          | .026                               | 7.120                              | .001                            | 23.308                            | 1.146  | 7.120          | 1293     | 9               |

Table D1 (Continued)

| Step        | Fraction       | $^{40}\text{Ar}/^{39}\text{Ar}$ | $^{38}\text{Ar}/^{39}\text{Ar}$ | $^{37}\mathrm{Ar}/^{39}\mathrm{Ar}$ | $^{36}\text{Ar}/^{39}\text{Ar}$ | $^{40}{\rm Ar}^{*/^{39}}{\rm Ar}$ | % atm   | Ca/K   | Age (Ma) | $1\sigma$ error |
|-------------|----------------|---------------------------------|---------------------------------|-------------------------------------|---------------------------------|-----------------------------------|---------|--------|----------|-----------------|
| 2250        | .012           | 23.662                          | .028                            | 6.977                               | .000                            | 23.654                            | .034    | 6.977  | 1307     | 5               |
| 2500        | .036           | 23.876                          | .029                            | 6.980                               | .000                            | 23.835                            | .168    | 6.980  | 1314     | 3               |
| 3000        | .002           | 24.115                          | .033                            | 7.114                               | 001                             | 24.537                            | -1.753  | 7.114  | 1341     | 34              |
| 3500        | .001           | 27.001                          | .036                            | 8.617                               | .010                            | 24.034                            | 10.989  | 8.617  | 1322     | 91              |
| 4000        | .000           | 18.453                          | .146                            | 16.762                              | 056                             | 34.948                            | -89.393 | 16.762 | 1704     | 1339            |
| J value     | = .044J9495    | $5 \pm .000093$                 | 101                             |                                     |                                 |                                   |         |        |          |                 |
| Total ga    | as age $= 130$ | $6.7 \pm 2.0 \text{ N}$         | 1a                              |                                     |                                 |                                   |         |        |          |                 |
| MI88-b65a 3 | 308a hornblen  | de:                             |                                 |                                     |                                 |                                   |         |        |          |                 |
| Power:      |                |                                 |                                 |                                     |                                 |                                   |         |        |          |                 |
| 100         | .002           | 28,756                          | .073                            | .423                                | .008                            | 26.372                            | 8.291   | .423   | 1408     | 5               |
| 200         | 003            | 21.934                          | 017                             | 200                                 | 001                             | 21.505                            | 1.956   | 200    | 1218     | 2               |
| 250         | 004            | 18 161                          | 005                             | 080                                 | 001                             | 17 930                            | 1 270   | 080    | 1064     | 2               |
| 300         | 009            | 18 431                          | 005                             | .000                                | .000                            | 18 341                            | 489     | .000   | 1083     | 1               |
| 350         | 015            | 17 999                          | .005                            | .005                                | .000                            | 17 944                            | 306     | .0053  | 1065     | 1               |
| 400         | .013           | 17.016                          | .005                            | .055                                | .000                            | 17.944                            | .500    | .055   | 1063     | 1               |
| 400         | .023           | 17.910                          | .005                            | .051                                | .000                            | 17.809                            | .134    | .051   | 1003     | 1               |
| 423         | .022           | 17.015                          | .005                            | .057                                | .000                            | 17.810                            | .028    | .057   | 1053     | 1               |
| 430         | .021           | 17.903                          | .005                            | .003                                | .000                            | 17.092                            | .008    | .003   | 1003     | 1               |
| 473         | .021           | 17.879                          | .005                            | .075                                | .000                            | 17.009                            | .034    | .075   | 1062     | 1               |
| 500         | .021           | 17.892                          | .005                            | .081                                | .000                            | 17.884                            | .043    | .081   | 1062     | 1               |
| 525         | .022           | 17.826                          | .006                            | .090                                | .000                            | 17.823                            | .014    | .090   | 1060     | 1               |
| 550         | .023           | 17.841                          | .006                            | .097                                | .000                            | 17.833                            | .042    | .097   | 1060     | 1               |
| 575         | .023           | 17.831                          | .006                            | .103                                | .000                            | 17.832                            | 007     | .103   | 1060     | 1               |
| 600         | .024           | 17.815                          | .006                            | .102                                | .000                            | 17.817                            | 013     | .102   | 1059     | 1               |
| 625         | .025           | 17.815                          | .007                            | .107                                | .000                            | 17.805                            | .053    | .107   | 1059     | 2               |
| 650         | .025           | 17.862                          | .007                            | .107                                | .000                            | 17.852                            | .057    | .107   | 1061     | 2               |
| 675         | .025           | 17.856                          | .007                            | .113                                | .000                            | 17.852                            | .022    | .113   | 1061     | 2               |
| 700         | .025           | 17.842                          | .007                            | .115                                | .000                            | 17.833                            | .051    | .115   | 1060     | 2               |
| 725         | .024           | 17.833                          | .007                            | .115                                | .000                            | 17.834                            | 004     | .115   | 1060     | 1               |
| 750         | .023           | 17.814                          | .007                            | .120                                | .000                            | 17.813                            | .003    | .120   | 1059     | 1               |
| 775         | .022           | 17.832                          | .007                            | .122                                | .000                            | 17.824                            | .047    | .122   | 1060     | 1               |
| 800         | .022           | 17.792                          | .006                            | .124                                | .000                            | 17.799                            | 034     | .124   | 1058     | 0               |
| 825         | .021           | 17.797                          | .006                            | .124                                | .000                            | 17.785                            | .063    | .124   | 1058     | 1               |
| 850         | .020           | 17.786                          | .006                            | .124                                | .000                            | 17.801                            | 084     | .124   | 1059     | 1               |
| 875         | .020           | 17.802                          | .006                            | .125                                | .000                            | 17.799                            | .018    | .125   | 1058     | 1               |
| 900         | .019           | 17.807                          | .006                            | .123                                | .000                            | 17.806                            | .008    | .123   | 1059     | 1               |
| 925         | .019           | 17.801                          | .006                            | .121                                | .000                            | 17.804                            | 014     | .121   | 1059     | 1               |
| 950         | .019           | 17.766                          | .006                            | .120                                | .000                            | 17.768                            | 010     | .120   | 1057     | 1               |
| 975         | .019           | 17.797                          | .006                            | .116                                | .000                            | 17.780                            | .091    | .116   | 1058     | 1               |
| 1000        | .019           | 17.805                          | .006                            | .114                                | .000                            | 17.811                            | 032     | .114   | 1059     | 1               |
| 1050        | .024           | 18.043                          | .006                            | .109                                | .000                            | 18.041                            | .015    | .109   | 1069     | 2               |
| 1100        | .030           | 17.979                          | .007                            | .104                                | .000                            | 17.971                            | .041    | .104   | 1066     | 1               |
| 1150        | 036            | 17.931                          | 007                             | 099                                 | 000                             | 17.915                            | 091     | 099    | 1064     | 1               |
| 1200        | 039            | 17 902                          | 007                             | 095                                 | 000                             | 17.887                            | 083     | .095   | 1062     | 2               |
| 1300        | 054            | 18.030                          | 008                             | .095                                | .000                            | 18 022                            | 043     | .095   | 1062     | 1               |
| 1400        | 059            | 18 136                          | 008                             | 080                                 | .000                            | 18 129                            | 040     | 080    | 1008     | 1               |
| 1500        | .050           | 18 137                          | .008                            | 136                                 | .000                            | 18 126                            | .040    | 136    | 1073     | 2               |
| 1750        | .030           | 18 373                          | 000                             | 330                                 | .000                            | 18 371                            | .000    | 330    | 1073     | 1               |
| 2000        | .040           | 18.373                          | .009                            | 210                                 | .000                            | 18.371                            | .014    | 210    | 1084     | 2               |
| 2000        | .025           | 18.317                          | .003                            | .219                                | .000                            | 18.300                            | .098    | .219   | 1081     | 2<br>1          |
| 2230        | .020           | 10.340                          | .003                            | .238                                | .000                            | 10.339                            | .030    | .238   | 1085     | 1               |
| 2500        | .014           | 18.11/                          | .002                            | .228                                | .000                            | 18.115                            | .010    | .228   | 1073     | 1               |
| 3000        | .007           | 18.269                          | .001                            | .193                                | .000                            | 18.258                            | .058    | .193   | 10/9     | 1               |
| 3500        | .005           | 18.296                          | .002                            | .221                                | .000                            | 18.321                            | 135     | .221   | 1082     | 2               |
| 4000        | .007           | 18.244                          | .001                            | .134                                | .000                            | 18.273                            | 158     | .134   | 1080     | 1               |
| J value     | = .0448376     | ± .0000799                      | 962                             |                                     |                                 |                                   |         |        |          |                 |
| Total ga    | as age = 106   | $6.7 \pm 1.5 \text{ N}$         | 1a                              |                                     |                                 |                                   |         |        |          |                 |