

Available online at www.sciencedirect.com



Precambrian Research 137 (2005) 35-59



www.elsevier.com/locate/precamres

# Two stage tectonic history of the SW Amazon craton in the late Mesoproterozoic: identifying a cryptic suture zone

E. Tohver<sup>a,\*</sup>, B.A. van der Pluijm<sup>a</sup>, K. Mezger<sup>b</sup>, J.E. Scandolara<sup>c,1</sup>, E.J. Essene<sup>a</sup>

<sup>a</sup> Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109-1063, USA
<sup>b</sup> Institut für Mineralogie, Universität Münster, Corrensstrasse 24, 48149, Münster, Germany
<sup>c</sup> Companhia de Pesquisas de Recursos Minerais (CPRM), Av. Lauro Sodré 2561, Porto Velho, RO 78904-300, Brazil

Received 6 February 2004; accepted 17 January 2005

#### Abstract

The history of the SW Amazon craton during late Mesoproterozoic times is marked by two separate tectonic events, the first related to collision with southern Laurentia and the second caused by suturing of the Paragua craton. The polycyclic basement rocks of the SW Amazon craton exposed in the Brazilian state of Rondônia were deformed at lower amphibolite conditions during early Grenville times (ca. 1.2–1.15 Ga). This deformation episode is the last of several tectonometamorphic events that affected the granitoid rocks of the Amazon basement throughout the Mesoproterozoic. The southern margin of the Amazon craton during late Mesoproterozoic times is defined by the E–W trending Nova Brasilândia metasedimentary belt, where upper amphibolite to granulite facies rocks from a younger (ca. 1.09 Ga) collisional event are preserved. Temperature–time (T–t) paths for each domain (craton and metasedimentary belt) are constructed using U–Pb,  $^{40}$ Ar/ $^{39}$ Ar, and Rb–Sr data for minerals with different blocking temperatures. The T–t paths demonstrate no overlap in the timing or spatial distribution of tectonic and metamorphic activity. The separate cooling histories indicate the presence of a major tectonic boundary between the polycyclic basement rocks and the metasedimentary belt. This structure marks the suturing of the Paragua craton in the late Mesoproterozoic and is evidence that the accretionary history of the present outline of the Amazon craton was completed during the final stages of the amalgamation of Rodinia.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Amazon craton; Rodinia; Metamorphism; Geochronology; Grenville orogen

1. Introduction

<sup>\*</sup> Corresponding author. Present address: Instituto de Geociências, Universidade de Sao Paulo Rua do Lago, 562, Sao Paulo, SP 05508-080, Brazil.

E-mail address: etohver@usp.br (E. Tohver).

<sup>&</sup>lt;sup>1</sup> Present address: Instituto de Geociências, Universidade de Brasília, CEP 70910-900, DF, Brazil.

Plate reconstructions for the Mesoproterozoic commonly propose a paleogeographic link between eastern Laurentia and the western margin of the Amazon craton (e.g., Hoffman, 1991; Weil et al., 1998). While the Amazon craton is traditionally defined by the Brasiliano belts that form its southeastern and eastern margins

<sup>0301-9268/\$ -</sup> see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.precamres.2005.01.002

(Almeida and Hasui, 1984), the temporal restrictions of this definition ignore the older, pre-Gondwanan history. One important aspect of documenting the accretionary and deformational history of the Amazon craton relates to the critical role played in the formation of the Precambrian supercontinent Rodinia; namely the collision between Amazonia and Laurentia during the Grenville orogeny (Rivers, 1997). Although there is general acceptance of this framework, the lack of detail regarding the tectonic history of the Amazon craton for the time interval 1.2-1.0 Ga hampers the assessment of tectonic links between the Amazon craton and Laurentia. The ability to critically evaluate Rodinia paleogeography is facilitated by comparing metamorphic histories, since metamorphism that is related to the collisional history can serve as a common element in the Rodinia framework. In the case of the exhumed Grenville orogen of Laurentia and the Amazon craton and its worldwide equivalents, the metamorphic history can be established through the study of the timing of peak metamorphism and subsequent cooling (e.g., Mezger et al., 1993; Ketchum et al., 1998; Rougvie et al., 1999).

Geochronological surveys of the SW Amazon craton began with the collection of whole rock Rb-Sr (Priem et al., 1971, 1989; Leal et al., 1978) and K-Ar data (Amaral, 1974). These geochronological data were originally interpreted in terms of linear, NW-SE trending domains that young to the SW (Teixeira et al., 1989; Sadowski and Bettencourt, 1996; Cordani and Sato, 1999). In the Brazilian state of Rondônia (Fig. 1), the use of modern geochronological techniques has improved the reliability of age data and the improvements in state infrastructure allow increased access to many outcrops. Recent studies based on U/Pb zircon age data coupled with Nd model ages have been expanded upon the original framework, although the increasing recognition of overlap between domains has raised questions regarding the exact locations of domain boundaries (Bettencourt et al., 1999; Pinho et al., 2003). The polycyclic nature of the SW Amazon basement



Fig. 1. Regional compilation of geochronological data from the Amazon craton and the adjacent Nova Brasilândia metasedimentary belt. Abbreviations are used as follows: m: monazite (U–Pb); al: allanite (U–Pb); t: titanite (U–Pb); hb: hornblende plateau ( $^{40}$ Ar/ $^{39}$ Ar); bi: biotite plateau ( $^{40}$ Ar/ $^{39}$ Ar); rb (Rb–Sr biotite). Asterisk denotes a total gas age.

is recognized from multiple episodes of intrusive activity throughout the Mesoproterozoic, while the abundance of U/Pb zircon ages and Nd model ages in the 1.8-1.5 Ga interval have been used to document crustal generation through processes interpreted to be anorogenic (Teixeira et al., 1989; Tassinari and Macambira, 1999). The focus of these studies on crust generating events, coupled with the refractory nature of igneous zircon, has given rise to an apparent contradiction of the Rodinia hypothesis; namely, the comparatively minor magmatic products of the 1.2-1.0 Ga interval do not reflect the widespread extent of Grenvillian deformation on the Amazon basement. Furthermore, the recent recognition of the Nova Brasilândia metasedimentary belt as a major Grenvillian mobile belt on the southern boundary of the SW Amazon craton basement (Rizzotto, 2001; Tohver et al., in press-a) requires a reevaluation of previous Amazon craton tectonic models that correlate like-aged geological provinces across a fundamental tectonic boundary, the paleocratonic margin.

New U/Pb, <sup>40</sup>Ar/<sup>39</sup>Ar, and Rb/Sr data from the SW Amazon craton are used in this contribution to constrain the late Mesoproterozoic temperature-time (T-t) evolution of the SW Amazon craton, with particular emphasis on the amphibolite facies deformational event that occurred at 1.2-1.12 Ga. This T-t history is compared to that documented by Tohver et al. (2004) for the adjacent Nova Brasilândia metasedimentary belt in order to determine the duration and/or number of tectonometamorphic events that affected the SW Amazon craton during the late Mesoproterozoic. Comparable geochronological transects of the North American Grenville province reveal cases where a common, high grade metamorphic history is followed by separate, post-metamorphic cooling paths; indicative of the role of post-orogenic, extensional shear zones in the differential exhumation of orogenically-thickened crustal roots (e.g. Mezger et al., 1993; van der Pluijm et al., 1994; Ketchum et al., 1998). Other examples, also from the North American Grenville province, indicate wholly separate metamorphic histories, indicating separate geological terranes bounded by exhumed, reactivated suture zones (e.g. Mezger et al., 1992; Busch et al., 1997; Streepey et al., 2001). In this contribution, we document two temporally distinct and spatially separate orogenic events that occurred in the SW Amazon craton during late Mesoproterozoic times, reflective of 1) an early "Grenvillian" collision with southern Laurentia (Tohver et al., 2002; Tohver et al., in press) and 2) accretion of the Paragua craton to the Amazon craton (Tohver et al., 2004).

# 2. Geological setting

The basement geology of the SW Amazon craton, best exposed in the western Brazilian state of Rondônia, is commonly interpreted in terms of NW-SE trending crustal domains that young to the SW (Teixeira et al., 1989; Tassinari and Macambira, 1999; Tassinari et al., 2000). An alternative model for the Amazon craton, one that posits a dominantly Archean platform marked by anorogenic reactivation episodes, is discredited by the general lack of Archean ages (for review cf. Almeida and Hasui, 1984), although the emphasis on anorogenic processes has been adopted by many workers. The regional tectonic framework begins with the construction of the Rio Negro-Juruena magmatic arc (RNJ) at 1.85-1.6 Ga (Tassinari et al., 1996). Payolla et al. (2002) documented calc-alkaline affinities for tonalitic gneisses and enderbitic granulites that represent this arc in the central portion of the state of Rondônia, with  $\varepsilon_{\rm Nd}$  initial values of -1.5 to +0.1, suggesting a continental arc setting with mantlederived magmas. The emplacement of the voluminous subalkaline granites of the Serra da Providência suite at 1.60-1.53 Ma marks the end of this period of arc construction, which was accompanied by the intrusion of related charnockites, mangerites, and gabbros (Ouro Preto charnockite and Uniao Massif: U-Pb zircon ages, Bettencourt et al., 1999; SHRIMP ages from zircon, Tassinari et al., 1996). Rapakivi textures in many of these rocks are interpreted as indicating extensional tectonics related to cratonization at the end of the RNJ arc-building period. Supracrustal equivalents of the crystalline basement rocks are confined to the eastern portion of Rondônia, where the Roosevelt volcanosedimentary sequence records deposition in a shallow marine/continental regime. Volcanic rocks (pyroclastic flows and welded tuffs) from this sequence are dacitic to rhyolitic in composition and are interbedded with sedimentary rocks that include micaceous schists and iron formations (Leal et al., 1978; Rizzotto et al., 1995). A whole rock Rb-Sr isochron from this sequence yielded an age of  $1560 \pm 80$  Ma  $(^{87}\text{Sr}/^{86}\text{Sr}_0 = 0.701 \pm 0.005)$ , although the low-grade metamorphism that affected this sequence requires a cautious interpretation of this age (Tassinari, 1981). This supracrustal sequence is prominent in regional Radarsat images and appears to define an eastern limit to subsequent deformational episodes (Scandolâra et al., 1998).

The Rondoniano-San Ignacio orogenic province (1.5-1.3 Ga) was originally based on the age correspondence (Rb-Sr whole rock) between the basement rocks of the Paragua craton (Litherland et al., 1986, 1989) and basement rocks of central Rondônia (Teixeira et al., 1989). More recent U-Pb zircon work by Bettencourt et al. (1999) has identified the ages of emplacement of widespread felsic plutons into the basement of central Rondônia, most notably the ca.1.4 Ga Santo Antônio and Teotônio suites, the ca. 1.34 Ga Alto Candeias batholith, and the ca. 1.31 Ga São Lourenço-Caripunas suite. The U-Pb geochronology on basement rocks from western Mato Grosso by Geraldes et al. (1997, 2001) yielded ages of 1.48-1.42 Ga for the Santa Helena batholith, leading Tassinari et al. (2000) to suggest that the Paragua basement rocks from Bolivia/Mato Grosso are correlated with Amazon basement rocks in Rondônia. This suggested correlation will be examined in more detail later in this contribution.

The youngest of the episodes recognized in the SW Amazon craton basement is the 1.05-0.95 Ga Sunsas-Aguapeí event, which is equivalent in age to a major episode of Grenvillian deformation in North America. Magmatism associated with this event in the basement rocks of Rondônia is evidenced by the intrusion of the Santa Clara intrusive suite at ca. 1.08 Ga and a final pulse of tin-bearing granites, i.e., the Younger Granites of Rondônia, emplaced at high structural levels at 1.0-0.97 Ga. Deformation resulting from the orogenic event was originally considered to have been restricted to the bifurcated branches of the Sunsas/Aguapeí belt. The western limb, known as the Sunsas belt, is found in central Bolivia where Precambrian shield rocks are exposed. The Santa Catalina network of sinistral sense, strike-slip shear zones strikes NW over 500 km, and a subordinate system, the San Diablo network, displays a conjugate shear zone geometry with shear zone strikes ranging from NW to NE (Litherland and Bloomfield, 1981; Litherland et al., 1989). Abundant granitic intrusions (Casa de Piedras) were emplaced syn- to post-kinematically in the Sunsas belt at ca. 1.05 Ga, dated by Rb-Sr whole rock isochrons and K-Ar analyses of mica (Litherland et al., 1989). The eastern limb, known as the Aguapeí belt, is exposed in the western Brazilian state of Mato Grosso. Deformation of this belt is of minor extent (<50 km wide) and is observed chiefly as low-grade thrust faults verging to the SW (Barros et al., 1982). Fernandes (1999) identified strike-slip shear zones with dextral offsets that accompanied this deformation. Magmatic rocks are rare in the latter belt, with localized occurrences of a two-mica granite (São Domingos and Guapé intrusive suites) with zircon <sup>207</sup>Pb/<sup>206</sup>Pb ages of ca. 930 Ma (Geraldes et al., 1997, 2001). The Sunsas belt is considered to mark the S boundary of the Paragua craton (Litherland et al., 1986; Teixeira et al., 1989). The aulacogenic origin of the Aguapei belt described by Saes (1999) indicates that the rocks on either side of the Aguapei belt have a common paleogeographic heritage as part of the Paragua craton. Recently, the recognition of the E-W trending Nova Brasilândia belt as a (1.1-1.0 Ga) collision zone affecting the late Mesoproterozoic margin of the SW Amazon craton places a northern limit on the extent of the Paragua craton (Rizzotto, 1999, 2001; Tohver et al., in press-a). The present study addresses the question of whether the ca. 1.1-1.0 Ga Nova Brasilândia deformation and metamorphism extended into the basement rocks of the SW Amazon craton.

#### 3. Regional metamorphic history

The E-W trending Nova Brasilândia metasedimentary belt (NBMB) lies S of the exposed Amazon basement, with the actual contact covered by two sequences of Neoproterozoic to Paleozoic sediments (Leal et al., 1978; Scandolâra et al., 1998; Bahia, 1999). Given the abundant metapelitic assemblages that characterize the NBMB, P-T-t conditions of the area are well constrained (Tohver et al., in press-a). Widespread deformation and crustal thickening in this belt ( $T_{\text{max}} = 750 \,^{\circ}\text{C}$ ,  $P_{\text{max}} = 7.9 \,\text{kbars}$ ) was accompanied by the synkinematic emplacement of the Rio Branco granite at  $1110 \pm 15$  Ma (U/Pb zircon, Rizzotto et al., 1999). Later emplacement of the Rio Pardo granite at  $995 \pm 15$  Ma took place in the waning phases of deformation, as evidenced by weaker fabric development in these rocks (Rizzotto, 1999).

tory of the basement rocks of the SW Amazon craton immediately to the north of the NBMB is not as well resolved, especially compared with the general framework established above for igneous events. Unfortunately, the predominance of metaluminous granitoids in the basement rocks hampers detailed P-Tstudies, given the abundance of minerals such as biotite and hornblende and the absence of garnet. Therefore, it is difficult to distinguish between the exhumation history of the Amazon basement and the adjacent Nova Brasilândia metasedimentary belt by comparing pressure-constrained assemblages alone. Outside of prominent shear zones, basement rocks typically register lower amphibolite to granulite conditions, but there is no clear pattern in geographic distribution or temporal sequence. However, by determining the thermal history from geochronological systems with different blocking temperatures, a metamorphic and exhumation history for rocks on either side of the inferred boundary zone can be deduced. A polymetamorphic history has been suggested on the basis of variable resetting of the K-Ar system, which indicates a 1.3-0.95 Ga age range (Teixeira et al., 1989), with the youngest ages reflecting the limited thermal effects of the intrusion of the Younger Granites suite. More recent U-Pb (207Pb/206Pb monazite =  $1326 \pm 1$  Ma) and Sm–Nd work (garnet-whole rock isochron  $1309 \pm 39$  Ma) confirms the presence of the ca. 1.3 Ga metamorphic event (Payolla et al., 2002), possibly related to the thermal effects of granite emplacement (Tassinari et al., 2000). Widespread 1.18-1.12 Ga deformation at 450-550 °C has been demonstrated in association with large shear zones, as evidenced by <sup>40</sup>Ar/<sup>39</sup>Ar dating and feldspar thermometry (Bettencourt et al., 1996; Tohver et al., in press-b) from the well-exposed central portion of the state of Rondônia.

In contrast, the deformational and metamorphic his-

### 4. Geochronology

A combination of U/Pb,  ${}^{40}$ Ar/ ${}^{39}$ Ar, and Rb–Sr analyses was conducted on 29 samples to constrain the high (700–600 °C), medium (500–300 °C) and low temperature (ca. 300 °C) cooling history of the basement rocks of the SW Amazon craton. Geochronological results and sample locations are presented in Table A.1 in

Appendix A. Separates of U-bearing minerals such as monazite, allanite and titanite were dated with conventional U-Pb, isotope dilution techniques at Universität Münster (for description of U/Pb methods see Tohver et al., in press-a), complemented with  ${}^{40}\text{Ar}/{}^{39}\text{Ar}$  analysis of hornblende and biotite at the University of Michigan (for description of <sup>40</sup>Ar/<sup>39</sup>Ar methods see Tohver et al., 2002). Analysis of 10–15 mg separates of biotite for Rb-Sr was performed at the Universität Münster in order to constrain the younger cooling history ( $\sim$ 300 °C), as well as for comparison with  ${}^{40}\text{Ar}/{}^{39}\text{Ar}$  biotite ages. Biotite samples were lightly ground in an agate mortar and sieved to remove non-phyllosilicate impurities. Sample were dissolved overnight in a HF-HNO3 mixture with a <sup>87</sup>Rb-<sup>84</sup>Sr spike in sealed, screw-op Savillex vials in Teflon-lined bombs. Rb and Sr were separated by standard ion exchange procedures in quartz columns using 2.5N HCl as eluent. Tantalum filaments were used for loading Rb, which was measured on a Teledyne mass spectrometer. Tungsten filaments were used for Sr mass spectrometric analysis, measured on a VG Sector 54 multi-collector mass spectrometer. Correction for mass fractionation is based on a <sup>86</sup>Sr/<sup>88</sup>Sr ratio of 0.1194. Rb ratios were corrected for mass fractionation using a factor deduced from multiple measurements of Rb standard NBS 607.

The U/Pb analyses of monazite and allanite (Fig. 2), with blocking temperatures of ca. 700 and  $650 \,^{\circ}$ C,



Fig. 2. U–Pb concordia plots for minerals analyzed from the Amazon basement of central Rondônia. The U/Pb ages (listed) for discordant samples are determined by a line through the origin and the intercept with the U/Pb concordia curve.

respectively (Parrish, 1991; Heaman and Parrish, 1991), demonstrate a relict, high-grade history with ages of ca. 1.35 Ga, similar to  $^{40}$  Ar/ $^{39}$ Ar ages preserved in hornblende from undeformed samples (Table 1). Allanite grains are typically discordant, with the 1.35 Ga age inferred from  $^{207}$  Pb/ $^{206}$ Pb ratios after correction for common Pb. Younger, discordant allanite grains with ca. 1.2 Ga ages are found in sheared rocks, indicating isotopic resetting through deformation, as interpreted for reset hornblende ages. Titanite grains typically record this ca. 1.2 Ga deformation with ages 1155  $\pm$  6 and 1195  $\pm$  23 Ma, also from rocks that have been recrystallized during deformation (Fig. 2).

Hornblende ages from <sup>40</sup>Ar/<sup>39</sup>Ar analysis reveal two principal age ranges (see representative argon isotope data in Table A.2 in Appendix A). Ages of ca.1.35 Ga are found in rocks not directly deformed by the Ji-Paraná shear zone network, whereas a younger set of ages in the 1.18-1.12 Ga range are observed in mvlonitic to protomylonitic samples. All biotite samples from both shear zones and undeformed rocks yield ages in the younger 1.15-1.10 Ga range, indicating that the temperature of regional deformation during this younger deformation event (1.2–1.12 Ga) was sufficiently hot to thermally reset biotite, which therefore, represent cooling ages. The exception to this pattern is sample Ron103, in which biotite grains yield ages older than the coexisting hornblende, suggesting the incorporation of excess <sup>40</sup>Ar (Fig. 3). The hornblende grains from this sample are characterized by a saddleshaped spectrum, a feature also indicative of excess argon (Table A.1). Age data from this sample are considered as meaningless and are not considered in the discussion to follow.

The Rb–Sr analysis of biotite was undertaken to test the significance of  ${}^{40}$ Ar/ ${}^{39}$ Ar ages and address the possibility of widespread, unrecognized excess  ${}^{40}$ Ar. Both radiogenic daughters ( ${}^{40}$ Ar and  ${}^{87}$ Sr) have a closure temperature of ~300 °C, making these systems ideal complements in establishing the chronology of cooling below the inferred temperature of deformation. A very wide distribution in  ${}^{87}$ Rb/ ${}^{86}$ Sr compositions for biotite samples is seen in Fig. 4 with tight clustering about a regressed line (slope = 0.01576 ± 0.00012, initial  ${}^{87}$ Sr/ ${}^{86}$ Sr = 0.70432 ± 0.00018, MSWD = 0.9865) from which an age of 1101 ± 9 Ma can be calculated. The initial  ${}^{87}$ Sr/ ${}^{86}$ Sr from the regression is in good agreement with the 0.704–0.723 range previously

| Sample   | U (ppm)     | Pb (ppm)     | <sup>206</sup> Pb/ <sup>204</sup> Pb | <sup>208</sup> Pb/ <sup>206</sup> Pb | $^{207}$ Pb/ $^{206}$ Pb | Error     | $^{207} Pb/^{235} U$ | Error    | <sup>206</sup> Pb/ <sup>238</sup> U | Error     | Rho Age       | data (Ma)  |                |             |
|----------|-------------|--------------|--------------------------------------|--------------------------------------|--------------------------|-----------|----------------------|----------|-------------------------------------|-----------|---------------|------------|----------------|-------------|
|          |             |              |                                      |                                      |                          |           |                      |          |                                     |           | 206F          | b/238U     | 207Pb/235U     | 207Pb/206Pb |
| 122 t    | 279.1       | 57.5         | 789.508                              | 0.066                                | 0.07833                  | 0.0002    | 2.108                | 0.009    | 0.195                               | 0.001     | 0.870 1148    |            | 1149           | 1152        |
| 122 al   | 603.6       | 432.6        | 906.934                              | 3.784                                | 0.08074                  | 0.0002    | 1.866                | 0.103    | 0.168                               | 0.009     | 0.999 998.0   | 0          | 1068           | 1213        |
| 108 al   | 250.4       | 640.5        | 108.144                              | 12.252                               | 0.08598                  | 0.0008    | 2.489                | 0.064    | 0.210                               | 0.005     | 0.926 1222    |            | 1258           | 1320        |
| 125 al   | 169.2       | 693.9        | 52.969                               | 19.604                               | 0.0806                   | 0.002     | 2.339                | 0.065    | 0.210                               | 0.002     | 0.630 1204    |            | 1185           | 1150        |
| js1 t    | 227.6       | 89.17        | 86.649                               | 0.241                                | 0.0799                   | 0.001     | 2.212                | 0.033    | 0.201                               | 0.001     | 0.633 1165    |            | 1165           | 1163        |
| 110 mon  | 2119        | 1584         | 3910.641                             | 2.602                                | 0.08604                  | 0.0001    | 2.766                | 0.010    | 0.233                               | 0.001     | 0.914 1351    |            | 1346           | 1339        |
| 121 al   | 75.41       | 445.7        | 376.460                              | 29.505                               | 0.09014                  | 0.0003    | 2.752                | 0.039    | 0.221                               | 0.003     | 0.964 1288    |            | 1340           | 1425        |
| 310 al   | 271.1       | 397.9        | 88.172                               | 3.953                                | 0.09373                  | 0.0009    | 3.671                | 0.061    | 0.284                               | 0.003     | 0.800 1610    |            | 1560           | 1492        |
| Abbrevia | tions: mon. | monazite: t. | titanite: al. al                     | lanite. Multior                      | ain aliquots we          | ere handn | icked from he        | noil vve | id senarates                        | using a h | oinocular mic | roscone. N | fonazite analv | ses compris |

U-Pb analyses

Table 1

3-5,  $\sim 50-300$  µm grains and titanite analyses 0.5-3 mg aliquots of  $\sim 30-500$  µm grains. All errors are calculated at the  $2\sigma$  level. Mass fractionation was determined to be 1.001 per atomic mass unit and analytical blanks ranged from 30 to 120 pg Pb. Initial Pb was calculated according using Stacey and Kramers (1975) two-stage Pb evolution model with a  $\mu_2$ value of 10.0, according to the findings of Tohver et al. (2004) Ab



Fig. 3. Argon age spectra from the Amazon basement samples. Ca/K and Cl/K ratios are also indicated for samples, in order to demonstrate possible effects of composition on the calculated age, notably observed in hornblende sample Ron314.



Fig. 3. (Continued)



Fig. 3. (Continued)



Fig. 3. (Continued).

reported by Priem et al. (1989) and Tosdal and Bettencourt (1994). It is unlikely that a single, initial <sup>87</sup>Sr/<sup>86</sup>Sr value is strictly valid for all rock samples, taken from tens to hundreds of kilometers apart, as would be implied by using the initial value determined by a regressed line through all samples. On this regional sampling scale, isotopic heterogeneities with regard to the initial value signify that the age calculated from this 'errorchron' represents the average metamorphic cooling age of all samples. With this caveat in mind, we use the <sup>87</sup>Sr/<sup>86</sup>Sr determined from this regression to calculate model ages for individual samples (see Table 2). In general, there are two sources of uncertainty for model ages thus calculated: first, instrumental precision in the determination of <sup>87</sup>Rb/<sup>86</sup>Sr and <sup>87</sup>Sr/<sup>86</sup>Sr (principally the former, compare  $\pm$  <sup>87</sup>Rb/<sup>86</sup>Sr versus  $\pm$  <sup>87</sup>Sr/<sup>86</sup>Sr in Table 2); and second, error related to incorrect Sr<sub>0</sub> values for individual samples (Davidson et al., 2005). The latter source of error decreases proportionally to the 87Sr/86Sr; compare 87Sr/86Sr values with  $\Delta Age$  column in Table 2. To test the geological significance of the model ages, we assume that the age of the reference isochron is a time of uniform regional cooling. If this assumption were true, all variation in



Fig. 4. Rb–Sr analyses for mica grains from the Amazon basement rocks of central Rondônia. Conventional isochron diagram yields a well-fit line from sample data points depicted with associated error bars. A better representation of the true error associated with each data point is shown with the isochron diagram devised by Provost (1990), where samples are depicted in the same relative order, left to right, on a graduated scale for the abscissa <sup>87</sup>Rb/<sup>86</sup>Sr. Values depicted on the ordinate (projected to the upper axis) are graduated in terms of initial <sup>87</sup>Sr/<sup>86</sup>Sr, and are calculated as a parameterized function of both <sup>87</sup>Rb/<sup>86</sup>Sr and <sup>87</sup>Sr/<sup>86</sup>Sr, with oblique lines depicting constant values for total <sup>87</sup>Sr/<sup>86</sup>Sr. The horizontal line is the regressed line shown in the conventional isochron diagram, with samples yielding older and younger model ages plotting above the line and below the line, respectively, in a fashion similar to the conventional isochron diagram.

| Sample          | Rb (ppm) | Sr (ppm) | <sup>87</sup> Rb/ <sup>86</sup> Sr | ±   | <sup>87</sup> Sr/ <sup>86</sup> Sr | ±      | Age (Ma)<br>Sr_0 = 0.704 | $\Delta Age (Ma)$<br>Sro = 0.75 | 2σ |
|-----------------|----------|----------|------------------------------------|-----|------------------------------------|--------|--------------------------|---------------------------------|----|
|                 |          |          |                                    |     |                                    |        | 510 = 0.704              | 510 = 0.75                      |    |
| Ron 118 biotite | 602.63   | 7.81     | 344                                | 0.9 | 6.241                              | 0.0001 | 1124                     | -10                             | 3  |
| Ron 304 biotite | 837.60   | 8.22     | 537                                | 3   | 9.120                              | 0.0017 | 1095                     | -7                              | 6  |
| Ron 123 biotite | 707.76   | 6.23     | 715                                | 1   | 12.732                             | 0.0003 | 1175                     | -5                              | 2  |
| Ron 122 biotite | 855.96   | 5.88     | 1225                               | 4   | 20.210                             | 0.0006 | 1112                     | -3                              | 4  |
| Ron 110 biotite | 690.37   | 4.70     | 1247                               | 5   | 20.456                             | 0.0016 | 1106                     | -3                              | 4  |
| JS-1 phlogopite | 789.10   | 14.44    | 207                                | 2   | 3.889                              | 0.0001 | 1070                     | -17                             | 5  |
| Ron 125 biotite | 707.09   | 11.22    | 249                                | 2   | 4.463                              | 0.0001 | 1054                     | -14                             | 4  |
| Ron 310 biotite | 505.64   | 31.77    | 49.4                               | 0.4 | 1.451                              | 0.0000 | 1056                     | -70                             | 20 |
| Ron 113 biotite | 760.36   | 16.94    | 163                                | 1   | 3.277                              | 0.0001 | 1106                     | -21                             | 6  |
| Ron 121 biotite | 833.61   | 8.15     | 523                                | 4   | 8.550                              | 0.0002 | 1049                     | -7                              | 2  |
| Ron 108 biotite | 835.44   | 7.63     | 613                                | 5   | 10.269                             | 0.0000 | 1090                     | -6                              | 2  |
| Ron 115 biotite | 1196.74  | 7.37     | 1639                               | 10  | 26.158                             | 0.0001 | 1085                     | -2                              | 1  |

Rb–Sr and age data for biotite separates from the SW Amazon craton basement rocks. Errors reported for <sup>87</sup>Rb/<sup>86</sup>Sr and <sup>87</sup>Sr/<sup>86</sup>Sr are at the  $2\sigma$  level. Ages in Ma are calculated assuming Sr<sub>0</sub>=0.704. The column entitled " $\Delta$ age (Ma) Sr<sub>0</sub>=0.75" shows the change in the calculated age, assuming Sr<sub>0</sub>=0.75. The column " $2\sigma$ " shows the error in the age calculation, based on precision in the measured isotopic values of Sr and Rb.

calculated model ages would be due to heterogeneities in the initial  ${}^{87}$ Sr/ ${}^{86}$ Sr value for individual samples. This exercise reveals that an improbably high variation in initial  ${}^{87}$ Sr/ ${}^{86}$ Sr values would be required to explain the differences between individual model ages (e.g.,  ${}^{87}$ Sr/ ${}^{86}$ Sr<sub>0</sub> > 1.45 for sample Ron 123), as seen from the Provost-type isochron plot (inset, Fig. 4),. This observation indicates that the variation in Rb–Sr model ages reflects geological events, rather than just localized heterogeneities of initial  ${}^{87}$ Sr/ ${}^{86}$ Sr from sample to sample.

The combination of U–Pb,  ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ , and Rb–Sr geochronological techniques demonstrates the effects of at least two metamorphic events that affected the basement rocks of the SW Amazon craton. The tectonic significance of the older, 1.35 Ga metamorphism is uncertain, although the abundant magmatic products that mark this period may indicate a heat source for static crustal metamorphism (Payolla et al., 2002) and extensive U mobilization (Tohver et al., 2004). In contrast, the resetting of isotopic systems during the 1.2-1.12 Ga interval is clearly associated with the effects of deformation (e.g., strain induced recrystallization in shear zones) that cannot have been operative at temperatures greater than ca. 500 °C, otherwise all hornblende samples would record cooling ages <1.2 Ga. The clustering of biotite ages at <1150 Ma for both the Rb–Sr and <sup>40</sup>Ar/<sup>39</sup>Ar systems indicates that the temperature of regional deformation was sufficient to thermally reset all biotite samples, i.e., these are cooling ages that follow the younger ca. 1.2–1.15 Ga deformation.

## 5. Discussion

Geochronological constraints on the metamorphic history of the SW Amazon craton demonstrate the widespread effects of deformation during the late Mesoproterozoic. The 1.2-1.1 Ga deformation (early Grenville) affects a basement complex of metaigneous granitoids and metavolcanics with a history that is commonly 300-600 My older. The basement rocks were affected by at least one widespread metamorphic event before the early Grenville deformation, possibly the result of widespread felsic intrusions at ca. 1.43-1.35 Ga (Payolla et al., 2002). Metamorphic minerals dated by the <sup>40</sup>Ar/<sup>39</sup>Ar and U-Pb techniques reveal a bimodal distribution of ages, the ca. 1.35 Ga event and a younger set of ca.1.2-1.15 Ga ages. Hornblendes dated by <sup>40</sup>Ar/<sup>39</sup>Ar analysis replicate this pattern, with the younger age range representing the timing of deformation of sheared rocks. The preservation of the older hornblende ages in less deformed blocks points to the role of deformational processes, rather than cooling below the argon closure temperature, as being chiefly responsible for isotopic age resetting. Thus, the variation in deformation ages is ascribed to episodic reactivation of mylonitic shear zones (Tohver et al., in pressb). Biotites dated by either  ${}^{40}$ Ar/ ${}^{39}$ Ar or Rb–Sr analysis always record ages that correspond to the younger 1.2–1.15 Ga deformation event or cooling in the wake of that episode.

The geological history of the Amazon basement is of a long-lived, polycyclic nature, whereas the adjacent Nova Brasilândia metasedimentary belt appears to have experienced a single Wilson cycle, i.e., production of mafic crust associated with deep water sediments, followed by crustal thickening through collision and the syn- to post-collisional intrusion of granites (Tohver et al., in press-a). The sedimentary protolith of the collision zone mostly comprises metamorphosed greywackes and marls interpreted as turbidite flows on a marine shelf-slope environment (Rizzotto, 1999), clearly distinct from the crystalline metaigneous rocks of the polycyclic basement rocks to the N. Comparison of the metamorphic history of the two domains juxtaposed at the surface today reveals two separate records that are temporally and spatially distinct. Cooling of the SW Amazon craton basement rocks and the adjacent Nova Brasilândia metasedimentary belt took place along two separate T-t trajectories that do not overlap (Fig. 5). The lack of a common history at the highest grades (Amazon  $T_{\text{deformation}} \leq 500 \,^{\circ}\text{C}$ , Nova Brasilândia  $T_{\text{metamorphism}} \sim 700-750 \,^{\circ}\text{C}$ ) demonstrates that the timing of peak tectonometamorphism took place 60–100 Ma apart. Furthermore, the lack of a common cooling trend even at the closure temperature of biotite (ca. 1050 Ma for craton versus 950 Ma for Nova Brasilândia Metasedimentary Belt) signifies that the juxtaposition of the different crustal levels exposed in the Amazon basement rocks and the adjacent Nova Brasilândia belt is the result of differential uplift later in the Neoproterozoic. The deposition of arkosic sediments of the Palmeiral Formation onto both of these domains provides a common, albeit radiogenically undated surface exposure age for both. The Nova Brasilândia mobile belt serves as the boundary between the SW Amazon craton basement and the adjacent Paragua craton, two cratonic blocks with no geological connection required before the suturing at ca. 1.1 Ga. This suture zone interpretation draws on



Fig. 5. Composite temperature-time path for SW Amazon craton. The polycyclic basement exhibits a polymetamorphic history with final cooling following deformation during 1.2–1.15 Ga event (dark grey) resulting from collision with southern Laurentia. The Nova Brasilândia metasedimentary belt (light grey) has a separate evolution with no evidence for metamorphic history prior to 1.1 Ga, meaning that the protolith for the Nova Brasilândia belt was not in place until after deformation of the adjacent basement rock had ceased. Thus, the two-stage tectonometamorphic history of the SW Amazon craton includes early "Grenvillian", strike-slip basement deformation at ca. 1.2–1.15 Ga, followed by deposition and subsequent deformation/metamorphism at 1.1 Ga when the final docking of the Paragua craton took place.

observations of the dismembered layered mafic rocks and marine sediments that form the NBMB protolith, relicts of an ocean basin that were reworked during the collision with the Paragua craton (Tohver et al., in press-a).

The two-stage history, and the identification of a ca. 1.10 Ga Nova Brasilândia suturing belt in the SW Amazon craton has clear significance for Rodinia paleogeography, particularly for the number and identity of the cratons colliding with the Grenville margin of Laurentia. Many workers have recognized the ca. 1.15 Ga Elzeviran and 1.05 Ga Ottawan orogenies as tectonic pulses in the central portion of the Grenville Province (Davidson, 1998). However, the suggestion that the Amazon craton was responsible for both episodes is not supported by paleomagnetic evidence suggesting that the Amazon craton collided with the southernmost portion of the Grenville Province of Laurentia (Llano region, Texas) at ca. 1.2 Ga (Tohver et al., 2002). New models for Grenville tectonics, therefore, need to account for the early ca. 1.2 Ga Amazon-Llano fit and continued relative motion between the two cratons after the initial collision. It has been proposed that a component of sinistral strike-slip motion of the Amazon craton resulted in a more northerly (modern coordinates) position against the central Grenville Province of Ontario and New York (Tohver et al., in press-a). This could explain the second, 1.05 Ga Ottawan orogeny as caused by emplacement of Amazonia. Additional evidence for the strike-slip passage is provided by Carrigan et al. (2003), who demonstrated non-Laurentian zircon ages in suspect Grenville inliers in the southern Appalachians. Loewy et al. (2003) and Tohver et al. (2004) extend these observations to propose an Amazonian provenance for these SE Appalachian rocks, although different paleogeographic scenarios preceding the transfer of Amazonian crust are inferred by these authors. The origin of the 1.15 Ga tectonic pulse in the central Grenville Province of Laurentia requires collision with another tectonic block, either a terrane or continent, possibly Baltica or the Paragua craton itself.

## 6. Conclusions

A two-stage tectonic history for the SW Amazon craton during the Grenville interval (1.2-1.0 Ga) is inferred from geochronological results obtained in this study. The Paleoproterozoic cratonic rocks preserve ca. 1.35 Ga metamorphic ages (U-Pb monazite and allanite.  ${}^{40}\text{Ar}/{}^{39}\text{Ar}$  hornblende) that were overprinted in some places by deformation. Deformation took place at ca. 1.2-1.15 Ga (U-Pb allanite and titanite, <sup>40</sup>Ar/<sup>39</sup>Ar hornblende) with cooling from this event recorded in all sample localities by <sup>40</sup>Ar/<sup>39</sup>Ar and Rb-Sr analysis of biotite. The adjacent Nova Brasilândia metasedimentary belt preserves a younger metamorphic (<1.10 Ga) history related to crustal thickening. The separate tectonometamorphic histories and observations of mafic rocks (oceanic crust?) and marine sediments are interpreted to indicate the presence of a suture marking the collision between the SW Amazon craton and the Paragua craton at the end of Mesoproterozoic times. The existence of this suture belt indicates that the initial docking of the Amazon craton with southern Laurentia at 1.2 Ga was followed by strike-slip motion, allowing for later suturing of the Paragua craton in the final stages of the amalgamation of Rodinia.

## Acknowledgments

Laboratory research was undertaken with support from the Deutscher Akademischer Austauschdienst (DAAD) and from NSF grant EAR 0230059. Heidi Baier at the Universität Münster is sincerely thanked for her help with laboratory work for both Rb–Sr and U–Pb systems. Chris Hall and Marcus Johnson provided help in the <sup>40</sup>Ar/<sup>39</sup>Ar laboratory at the University of Michigan. Fieldwork was supported by the Stichting Dr. Shurmannfonds and the University of Michigan Scott Turner Fund. We thank Rommel da Silva Sousa and the CPRM office of Porto Velho for the generous support of fieldwork in Rondônia. Careful reviews by J.S. Bettencourt and an anonymous reviewer are appreciated.

# Appendix A

# See Tables A.1 and A.2.

#### Table A.1

Geochronological results and sample locations

| Sample | Location              | U–Pb                    | <sup>40</sup> Ar/ <sup>39</sup> Ar                                       | Rb/Sr biotite (assuming |
|--------|-----------------------|-------------------------|--------------------------------------------------------------------------|-------------------------|
|        |                       |                         |                                                                          | $Sr_0 = 0.704)$         |
| 103    | 9°51.68′S63°7.86′W    | -                       | $1265 \pm 3$ hb*, $1271 \pm 3$ hb*, $1269 \pm 3$ hb, $1404 \pm 3$ bio*,  | _                       |
|        |                       |                         | $1399 \pm 3$ bio*, excess Ar(?)                                          |                         |
| 105    | 9°59.17'S63°8.02'W    | -                       | $1126.2 \pm 2.4$ bio*, $1130 \pm 3$ bio                                  | _                       |
| 107    | 10°17.66'S63°19.19'W  | _                       | $1368 \pm hb^*, 1310 \pm 3 bio^*$                                        | _                       |
| 108    | 9°58.51′S63°2.24′W    | $1338 \pm 19$ al        | $1168 \pm 3 \text{ hb}^*$ , $1175 \pm 3 \text{ hb}$                      | $1090 \pm 2$            |
| 110    | 10°4.70'S62°58.39'W   | $1339 \pm 6 \text{ m}$  | _                                                                        | $1106 \pm 4$            |
| 113    | 10°9.143'S62°50.54'W  | _                       | $1185 \pm 4$ hb*, $1188 \pm 5$ hb, $1161 \pm 4$ hb*, $1141 \pm 3$ bio*,  | $1106 \pm 6$            |
|        |                       |                         | $1143 \pm 3$ bio, $1121 \pm 3$ bio*, $1126 \pm 3$ bio                    |                         |
| 115    | 10°10.47'S62°54.60'W  | _                       |                                                                          | $1085 \pm 1$            |
| 118    | 10°17.75'S62°46.26'W  | _                       | $1245 \pm 2$ hb*, $1177 \pm 2$ hb*, $1088 \pm 2$ bio*, $1091 \pm 2$ bio, | $1124 \pm 3$            |
|        |                       |                         | $1080 \pm 2 \text{ bio}^*$                                               |                         |
| 119    | 10°22.262'S62°33.48'W |                         | $1356 \pm 3 \text{ hb}^*$ , $1317 \pm 3 \text{ hb}^*$                    | _                       |
| 121    | 10°31.85'S62°23.86'W  | $1429 \pm 9$ al         | $1367 \pm 3$ hb*, $1367 \pm 3$ hb, $1328 \pm 3$ hb*                      | $1049 \pm 2$            |
| 122    | 10°36.112'S62°20.69'W | $1215 \pm 7$ al         | $1105 \pm 2 \text{ bio}^*$                                               | $1112 \pm 4$            |
| 123    | 10°42.52′S62°15.38′W  | $1155 \pm 7 t$          | $1142\pm5$ hb*, $1155\pm5$ hb, $1243\pm3$ hb*, $1149\pm3$ bio*           | $1175 \pm 2$            |
| 125    | 11°9.41′S61°54.01′W   | $1212 \pm 45$ al        | $1310 \pm 5$ hb*, $1190 \pm 6$ hb, $1094 \pm 2$ bio*, $1094 \pm 2$ bio,  | $1054 \pm 6$            |
|        |                       |                         | $1103 \pm 2$ bio*, $1104 \pm 2$ bio                                      |                         |
| 126    | 11°10.93'S61°54.17'W  | -                       | $1318 \pm 3$ hb*, $1325 \pm 4$ hb, $1348 \pm 3$ hb*, $1335 \pm 5$ hb,    | _                       |
|        |                       |                         | $1209 \pm 2 \text{ bio}^*$                                               |                         |
| 127    | 11°40.69′S62°11.88′W  | -                       | $930 \pm 3$ bio*, $928 \pm 4$ bio, $923 \pm 3$ bio*, $920 \pm 3$ bio     | _                       |
| 133    | 11°54.60′S61°46.82′W  | -                       | $994 \pm 6 \text{ hb*}, 983 \pm 7 \text{ hb}, 1005 \pm 7 \text{ hb*}$    | _                       |
| 134    | 11°54.90'S61°46.79'W  | $1090 \pm 6 \text{ m}$  | $912 \pm 2$ bio*, $910 \pm 2$ bio, $914 \pm 2$ bio*                      | _                       |
| 135    | 11°55.79′S62°02.17′W  | -                       | $961 \pm 4 \text{ hb*}, 966 \pm 3 \text{ hb}$                            | _                       |
| 303    | 9°47.78′S62°55.60′W   | -                       | $1307 \pm 2 \text{ hb}^*$                                                | _                       |
| 304    | 9°47.84′S62°54.25′W   | -                       | -                                                                        | $1095 \pm 4$            |
| 305    | 9°46.92′S62°53.69′W   | -                       | $1183 \pm 2 \text{ bio}^*$                                               | _                       |
| 308    | 10°24.85'S62°30.36'W  | -                       | $1067 \pm 2$ hb*, $1096 \pm 2$ hb*, $1113 \pm 2$ bio*                    | _                       |
| 310    | 11°10.96'S61°54.09'W  | -                       | -                                                                        | $1056 \pm 4$            |
| 314    | 11°24.05'S61°19.25'W  | -                       | $1161 \pm 5$ hb*, $1299 \pm 5$ hb*, $1455 \pm 2$ bio*                    |                         |
| 316    | 11°49.32'S61°51.05'W  | $1020 \pm 15 \text{ m}$ | -                                                                        | _                       |
| 319    | 11°57.46'S61°51.15'W  | $993 \pm 12 \text{ m}$  | -                                                                        | _                       |
| 324a   | 11°48.76′S62°18.78′W  | -                       | $964 \pm 1$ bio*                                                         | _                       |
| 325    | 11°48.84'S62°18.63'W  | -                       | $957 \pm 2 \text{ bio}^*$                                                | _                       |
| 326    | 11°40.76'S62°11.78'W  | $1082 \pm 6 \text{ m}$  | $948 \pm 2 \text{ bio}^*$                                                | _                       |

m, Monazite; al, allanite; t, titanite; hb, hornblende; bio, biotite; \*, total gas age, otherwise plateau age.

#### Table A.2

Representative argon isotope data

| Power    | Fraction  | <sup>40</sup> Ar/ <sup>39</sup> Ar | <sup>38</sup> Ar/ <sup>39</sup> Ar | <sup>37</sup> Ar/ <sup>39</sup> Ar | <sup>36</sup> Ar/ <sup>39</sup> Ar | $^{40}\mathrm{Ar}^{*/39}\mathrm{Ar}$ | %atm   | Ca/K   | Age (Ma) | $1\sigma$ error |
|----------|-----------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|--------------------------------------|--------|--------|----------|-----------------|
| d4b biot | ite et118 |                                    |                                    |                                    |                                    |                                      |        |        |          |                 |
| 50       | 0.006     | 15.352                             | 0.053                              | 0.209                              | 0.000                              | 15.470                               | -0.763 | 0.209  | 533      | 150             |
| 100      | 0.017     | 35.632                             | 0.030                              | 0.089                              | 0.004                              | 34.437                               | 3.355  | 0.089  | 1026     | 35              |
| 200      | 0.147     | 37.372                             | 0.026                              | 0.011                              | 0.000                              | 37.490                               | -0.315 | 0.011  | 1094     | 4               |
| 275      | 0.166     | 37.389                             | 0.024                              | 0.003                              | 0.000                              | 37.356                               | 0.089  | 0.003  | 1091     | 5               |
| 350      | 0.167     | 37.381                             | 0.025                              | 0.004                              | 0.000                              | 37.492                               | -0.297 | 0.004  | 1094     | 4               |
| 425      | 0.113     | 37.234                             | 0.024                              | 0.004                              | -0.001                             | 37.428                               | -0.520 | 0.004  | 1093     | 5               |
| 500      | 0.193     | 37.124                             | 0.024                              | 0.003                              | 0.000                              | 37.179                               | -0.148 | 0.003  | 1087     | 3               |
| 600      | 0.107     | 37.032                             | 0.024                              | 0.004                              | -0.001                             | 37.211                               | -0.484 | 0.004  | 1088     | 7               |
| 675      | 0.064     | 37.014                             | 0.025                              | 0.002                              | -0.002                             | 37.499                               | -1.311 | 0.002  | 1094     | 8               |
| 800      | 0.013     | 37.450                             | 0.024                              | 0.024                              | -0.007                             | 39.473                               | -5.402 | 0.024  | 1137     | 38              |
| 3000     | 0.007     | 37.149                             | 0.034                              | -0.024                             | -0.006                             | 38.779                               | -4.386 | -0.024 | 1122     | 78              |

J-value =  $0.02224 \pm 0.00004$ 

Total gas age  $1088.2\pm2.4\,\mathrm{Ma}$ 

Table A.2 (Continued)

| Power    | Fraction     | 40 Ar/39 Ar        | <sup>38</sup> Ar/ <sup>39</sup> Ar | <sup>37</sup> Ar/ <sup>39</sup> Ar | <sup>36</sup> Ar/ <sup>39</sup> Ar | $^{40}{\rm Ar}^{*}/^{39}{\rm Ar}$ | %atm     | Ca/K   | Age (Ma)   | $1\sigma$ error |
|----------|--------------|--------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|----------|--------|------------|-----------------|
| C4a-113  | 3 bio        |                    |                                    |                                    |                                    |                                   |          |        |            |                 |
| 100      | 0.005        | 8.154              | 1.662                              | 0.074                              | 0.007                              | 6.124                             | 24.895   | 0.074  | 422        | 23              |
| 200      | 0.011        | 15.780             | 0.157                              | 0.005                              | 0.002                              | 15.331                            | 2.847    | 0.005  | 914        | 7               |
| 250      | 0.015        | 20.050             | 0.140                              | 0.011                              | 0.001                              | 19.901                            | 0.744    | 0.011  | 1116       | 6               |
| 300      | 0.026        | 20.805             | 0.142                              | 0.007                              | 0.000                              | 20.940                            | -0.651   | 0.007  | 1159       | 3               |
| 350      | 0.042        | 20.716             | 0.141                              | 0.000                              | 0.000                              | 20.794                            | -0.377   | 0.000  | 1153       | 2               |
| 400      | 0.055        | 20.705             | 0.140                              | 0.003                              | 0.000                              | 20.843                            | -0.665   | 0.003  | 1155       | 2               |
| 450      | 0.059        | 20.710             | 0.141                              | 0.003                              | 0.000                              | 20.748                            | -0.185   | 0.003  | 1151       | 1               |
| 500      | 0.060        | 20.709             | 0.140                              | 0.006                              | 0.000                              | 20.716                            | -0.035   | 0.006  | 1149       | 1               |
| 550      | 0.068        | 20.726             | 0.141                              | 0.006                              | 0.000                              | 20.730                            | -0.022   | 0.006  | 1150       | 2               |
| 600      | 0.066        | 20.674             | 0.140                              | 0.005                              | 0.000                              | 20.731                            | -0.277   | 0.005  | 1150       | 2               |
| 650      | 0.060        | 20.626             | 0.141                              | 0.015                              | 0.000                              | 20.633                            | -0.035   | 0.015  | 1146       | 1               |
| 700      | 0.054        | 20.654             | 0.140                              | 0.011                              | 0.000                              | 20.658                            | -0.019   | 0.011  | 1147       | 1               |
| 750      | 0.056        | 20.673             | 0.140                              | 0.014                              | 0.000                              | 20.638                            | 0.170    | 0.014  | 1146       | 2               |
| 800      | 0.059        | 20.580             | 0.138                              | 0.017                              | 0.000                              | 20.565                            | 0.073    | 0.017  | 1143       | 2               |
| 850      | 0.051        | 20.499             | 0.138                              | 0.047                              | 0.000                              | 20.502                            | -0.011   | 0.047  | 1141       | 2               |
| 900      | 0.043        | 20.515             | 0.137                              | 0.077                              | 0.000                              | 20.480                            | 0.173    | 0.077  | 1140       | 2               |
| 950      | 0.060        | 20.584             | 0.139                              | 0.087                              | 0.000                              | 20.586                            | -0.011   | 0.087  | 1144       | 2               |
| 1000     | 0.058        | 20.546             | 0.139                              | 0.048                              | 0.000                              | 20.558                            | -0.058   | 0.048  | 1143       | 2               |
| 1100     | 0.043        | 20.591             | 0.138                              | 0.004                              | 0.000                              | 20.618                            | -0.132   | 0.004  | 1145       | 2               |
| 1200     | 0.027        | 20.585             | 0.138                              | -0.002                             | 0.000                              | 20.568                            | 0.084    | -0.002 | 1143       | 3               |
| 1300     | 0.039        | 20.549             | 0.139                              | -0.001                             | 0.000                              | 20.592                            | -0.205   | -0.001 | 1144       | 2               |
| 1400     | 0.021        | 20.604             | 0.138                              | 0.002                              | 0.000                              | 20.646                            | -0.201   | 0.002  | 1147       | 3               |
| 1500     | 0.013        | 20.482             | 0.139                              | -0.008                             | 0.001                              | 20.310                            | 0.842    | -0.008 | 1133       | 5               |
| 1750     | 0.005        | 20.723             | 0.134                              | -0.006                             | 0.000                              | 20.788                            | -0.310   | -0.006 | 1152       | 16              |
| 2000     | 0.001        | 20.832             | 0.140                              | -0.008                             | 0.006                              | 19.106                            | 8.288    | -0.008 | 1082       | 57              |
| 2400     | 0.001        | 20.703             | 0.141                              | 0.016                              | 0.009                              | 17.934                            | 13.376   | 0.016  | 1032       | 71              |
| 2800     | 0.000        | 20.804             | 0.124                              | -0.546                             | 0.029                              | 12.243                            | 41.153   | -0.546 | 763        | 371             |
| 3200     | 0.000        | 21.691             | 0.099                              | -1.240                             | 0.011                              | 18.556                            | 14.452   | -1.240 | 1059       | 231             |
| 4000     | 0.000        | 29.956             | 0.160                              | -0.851                             | -0.004                             | 31.170                            | -4.052   | -0.851 | 1534       | 386             |
| J-value: | =0.04301 +   | 0.00012            |                                    |                                    |                                    |                                   |          |        |            |                 |
| Total ga | s age = 1141 | $\pm 3 \text{ Ma}$ |                                    |                                    |                                    |                                   |          |        |            |                 |
| 2 .10    | N5 1 1 1 1 1 |                    |                                    |                                    |                                    |                                   |          |        |            |                 |
| c3a etft |              | 5 7 6 9            | 0.102                              | 0.005                              | 0.000                              | 2 1 9 2                           | 44.021   | 0.005  | 222        | 100             |
| 20       | 0.001        | 5.768              | 0.102                              | -0.095                             | 0.009                              | 3.182                             | 44.831   | -0.095 | 232        | 123             |
| 40       | 0.000        | 5.390              | 0.047                              | 0.873                              | -0.064                             | 24.228                            | -349.524 | 0.873  | 1289       | 422             |
| 50       | 0.000        | 8.230              | 0.093                              | -0.360                             | 0.061                              | -9.819                            | 219.310  | -0.300 | -990       | 1530            |
| 70       | 0.000        | 11.074             | 0.108                              | 0.519                              | 0.027                              | 3.007                             | 72.300   | 0.519  | 224        | 205             |
| /0       | 0.000        | 11.343             | 0.145                              | 0.555                              | -0.020                             | 1/.1/1                            | -51.381  | 0.555  | 998        | 395             |
| 80       | 0.000        | 15.755             | 0.091                              | 0.140                              | 0.014                              | 9.082                             | 29.507   | 0.140  | 028<br>707 | 424             |
| 90       | 0.000        | 10.544             | 0.093                              | -0.080                             | 0.018                              | 11.140                            | 12 769   | -0.080 | /0/        | 415             |
| 100      | 0.000        | 17.514             | 0.043                              | -0.710                             | -0.008                             | 19.731                            | -12.708  | -0.710 | 1024       | 119             |
| 120      | 0.000        | 10.024             | 0.059                              | -0.232                             | 0.003                              | 17.755                            | 4.079    | -0.232 | 1024       | 05              |
| 120      | 0.001        | 19.221             | 0.038                              | -0.117                             | 0.007                              | 17.199                            | 10.310   | -0.117 | 999        | 63<br>48        |
| 130      | 0.001        | 20.529             | 0.063                              | -0.046                             | 0.007                              | 10.151                            | 0.427    | -0.040 | 1041       | 40              |
| 140      | 0.002        | 19.570             | 0.063                              | -0.030                             | 0.000                              | 19.002                            | -0.437   | -0.050 | 1100       | 20              |
| 150      | 0.005        | 19.312             | 0.062                              | -0.010                             | -0.001                             | 19.701                            | -1.279   | -0.010 | 1110       | 10              |
| 100      | 0.003        | 19.000             | 0.061                              | -0.001                             | 0.000                              | 19.997                            | -0.649   | -0.001 | 1120       | 14              |
| 180      | 0.008        | 20.104             | 0.003                              | -0.009                             | -0.001                             | 20.129                            | -1.039   | -0.009 | 1120       | 11              |
| 100      | 0.011        | 20.104             | 0.001                              | 0.001                              | -0.001                             | 20.320                            | -1.103   | 0.001  | 1134       | I<br>E          |
| 200      | 0.010        | 20.005             | 0.005                              | 0.015                              | 0.000                              | 20.039                            | 0.050    | 0.015  | 1125       | 0               |
| 200      | 0.012        | 20.132             | 0.000                              | -0.009                             | 0.000                              | 20.149                            | 0.01/    | 0.009  | 1120       | 5               |
| 240      | 0.017        | 20.137             | 0.005                              | 0.000                              | 0.000                              | 20.209                            | 0.030    | 0.000  | 1129       | 2               |
| 240      | 0.025        | 20.130             | 0.005                              | 0.000                              | 0.000                              | 20.120                            | 0.079    | 0.000  | 1140       | 3               |

Table A.2 (Continued)

| Power                | Fraction                   | <sup>40</sup> Ar/ <sup>39</sup> Ar | <sup>38</sup> Ar/ <sup>39</sup> Ar | <sup>37</sup> Ar/ <sup>39</sup> Ar | <sup>36</sup> Ar/ <sup>39</sup> Ar | $^{40}{\rm Ar}^{*}/^{39}{\rm Ar}$ | %atm    | Ca/K   | Age (Ma) | $1\sigma$ error |
|----------------------|----------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|---------|--------|----------|-----------------|
| 260                  | 0.027                      | 20.193                             | 0.066                              | 0.004                              | 0.000                              | 20.155                            | 0.186   | 0.004  | 1127     | 3               |
| 280                  | 0.029                      | 20.100                             | 0.064                              | -0.003                             | 0.000                              | 20.158                            | -0.293  | -0.003 | 1127     | 3               |
| 300                  | 0.032                      | 20.178                             | 0.066                              | -0.003                             | 0.000                              | 20.217                            | -0.193  | -0.003 | 1129     | 2               |
| 350                  | 0.045                      | 20.205                             | 0.066                              | -0.002                             | 0.000                              | 20.196                            | 0.044   | -0.002 | 1128     | 2               |
| 400                  | 0.052                      | 20.258                             | 0.066                              | -0.002                             | 0.000                              | 20.256                            | 0.013   | -0.002 | 1131     | 1               |
| 480                  | 0.075                      | 20.219                             | 0.065                              | 0.001                              | 0.000                              | 20.207                            | 0.060   | 0.001  | 1129     | 1               |
| 560                  | 0.091                      | 20.200                             | 0.064                              | -0.001                             | 0.000                              | 20.191                            | 0.042   | -0.001 | 1128     | 1               |
| 640                  | 0.120                      | 20.179                             | 0.065                              | 0.002                              | 0.000                              | 20.159                            | 0.101   | 0.002  | 1127     | 1               |
| 800                  | 0.268                      | 20.176                             | 0.065                              | 0.002                              | 0.000                              | 20.171                            | 0.027   | 0.002  | 1127     | 1               |
| 810                  | 0.055                      | 20.184                             | 0.064                              | 0.000                              | 0.000                              | 20.154                            | 0.150   | 0.000  | 1127     | 2               |
| 850                  | 0.038                      | 20.199                             | 0.063                              | 0.000                              | 0.000                              | 20.129                            | 0.346   | 0.000  | 1126     | 2               |
| 900                  | 0.031                      | 20.272                             | 0.065                              | -0.002                             | 0.000                              | 20.248                            | 0.117   | -0.002 | 1131     | 2               |
| 950                  | 0.012                      | 20.225                             | 0.065                              | -0.002                             | 0.001                              | 19.879                            | 1.712   | -0.002 | 1115     | 6               |
| 1000                 | 0.008                      | 20.350                             | 0.069                              | -0.014                             | 0.001                              | 20.153                            | 0.967   | -0.014 | 1127     | 5               |
| 1100                 | 0.009                      | 20.410                             | 0.067                              | -0.006                             | 0.002                              | 19.926                            | 2.371   | -0.006 | 1117     | 6               |
| 1200                 | 0.005                      | 20.813                             | 0.064                              | -0.033                             | 0.003                              | 20.045                            | 3.687   | -0.033 | 1122     | 9               |
| 1300                 | 0.005                      | 20.450                             | 0.066                              | 0.013                              | 0.003                              | 19.694                            | 3.695   | 0.013  | 1107     | 11              |
| 1400                 | 0.002                      | 20.486                             | 0.069                              | 0.011                              | 0.005                              | 19.048                            | 7.017   | 0.011  | 1080     | 23              |
| 1500                 | 0.001                      | 20.690                             | 0.075                              | 0.081                              | -0.008                             | 23.012                            | -11.220 | 0.081  | 1242     | 78              |
| 1750                 | 0.000                      | 23.752                             | 0.046                              | -0.469                             | -0.011                             | 26.956                            | -13.486 | -0.469 | 1389     | 182             |
| 2000                 | 0.000                      | 22.330                             | 0.058                              | -0.189                             | -0.003                             | 23.184                            | -3.822  | -0.189 | 1248     | 125             |
| 2400                 | 0.000                      | 36.859                             | -0.079                             | 0.737                              | 0.013                              | 33.077                            | 10.261  | 0.737  | 1597     | 943             |
| 2800                 | 0.000                      | 46.363                             | 0.026                              | 0.372                              | 0.043                              | 33.690                            | 27.335  | 0.372  | 1617     | 784             |
| 3200                 | 0.000                      | 45.511                             | 0.020                              | 1.762                              | 0.223                              | -20.416                           | 144.860 | 1.762  | -3285    | 20366           |
| 4000                 | 0.000                      | 51.479                             | 0.056                              | -0.603                             | 0.101                              | 21.723                            | 57.803  | -0.603 | 1191     | 423             |
| Total ga<br>c2a et10 | s age = 1126<br>03 biotite | $\pm 2 \text{ Ma}$                 |                                    |                                    |                                    |                                   |         |        |          |                 |
| 50                   | 0.001                      | 14.464                             | 0.068                              | 0.302                              | 0.001                              | 14.204                            | 1.793   | 0.302  | 863      | 39              |
| 75                   | 0.001                      | 23.674                             | 0.043                              | 0.180                              | -0.004                             | 24.854                            | -4.987  | 0.180  | 1315     | 79              |
| 100                  | 0.001                      | 27.886                             | 0.060                              | 0.021                              | 0.003                              | 26.883                            | 3.596   | 0.021  | 1390     | 34              |
| 125                  | 0.003                      | 28.324                             | 0.047                              | 0.099                              | 0.000                              | 28.219                            | 0.370   | 0.099  | 1437     | 13              |
| 150                  | 0.006                      | 27.580                             | 0.040                              | 0.037                              | -0.001                             | 27.902                            | -1.166  | 0.037  | 1426     | 6               |
| 175                  | 0.010                      | 27.320                             | 0.041                              | 0.007                              | 0.000                              | 27.381                            | -0.224  | 0.007  | 1407     | 5               |
| 200                  | 0.012                      | 27.412                             | 0.040                              | -0.001                             | 0.000                              | 27.402                            | 0.038   | -0.001 | 1408     | 3               |
| 225                  | 0.014                      | 27.265                             | 0.040                              | 0.007                              | 0.000                              | 27.210                            | 0.205   | 0.007  | 1401     | 4               |
| 250                  | 0.016                      | 27.287                             | 0.040                              | 0.003                              | 0.000                              | 27.216                            | 0.259   | 0.003  | 1402     | 4               |
| 275                  | 0.013                      | 27.367                             | 0.040                              | -0.002                             | 0.000                              | 27.314                            | 0.193   | -0.002 | 1405     | 4               |
| 300                  | 0.003                      | 27.505                             | 0.038                              | 0.001                              | -0.001                             | 27.676                            | -0.623  | 0.001  | 1418     | 11              |
| 350                  | 0.008                      | 27.347                             | 0.040                              | 0.021                              | 0.000                              | 27.289                            | 0.215   | 0.021  | 1404     | 6               |
| 400                  | 0.020                      | 27.360                             | 0.040                              | 0.009                              | 0.000                              | 27.382                            | -0.080  | 0.009  | 1408     | 2               |
| 450                  | 0.033                      | 27.362                             | 0.040                              | 0.001                              | 0.000                              | 27.353                            | 0.034   | 0.001  | 1406     | 1               |
| 500                  | 0.040                      | 27.360                             | 0.040                              | 0.006                              | 0.000                              | 27.342                            | 0.063   | 0.006  | 1406     | 2               |
| 550                  | 0.047                      | 27.377                             | 0.040                              | 0.005                              | 0.000                              | 27.330                            | 0.171   | 0.005  | 1406     | 2               |
| 600                  | 0.051                      | 27.375                             | 0.040                              | 0.008                              | 0.000                              | 27.353                            | 0.079   | 0.008  | 1406     | 2               |
| 650                  | 0.049                      | 27.277                             | 0.040                              | 0.008                              | 0.000                              | 27.256                            | 0.079   | 0.008  | 1403     | 1               |
| 700                  | 0.050                      | 27.350                             | 0.040                              | 0.019                              | 0.000                              | 27.338                            | 0.043   | 0.019  | 1406     | 1               |
| 750                  | 0.043                      | 27.350                             | 0.039                              | 0.028                              | 0.000                              | 27.300                            | 0.186   | 0.028  | 1405     | 2               |
| 800                  | 0.040                      | 27.344                             | 0.040                              | 0.038                              | 0.000                              | 27.259                            | 0.311   | 0.038  | 1403     | 2               |
| 850                  | 0.040                      | 27.356                             | 0.039                              | 0.038                              | 0.000                              | 27.299                            | 0.212   | 0.038  | 1405     | 1               |
| 900                  | 0.049                      | 27.355                             | 0.040                              | 0.024                              | 0.000                              | 27.309                            | 0.167   | 0.024  | 1405     | 2               |
| 950                  | 0.039                      | 27.291                             | 0.040                              | 0.031                              | 0.000                              | 27.268                            | 0.086   | 0.031  | 1403     | 2               |
| 1000                 | 0.055                      | 27.214                             | 0.039                              | 0.045                              | 0.000                              | 27.178                            | 0.133   | 0.045  | 1400     | 1               |

Table A.2 (Continued)

| Power    | Fraction         | <sup>40</sup> Ar/ <sup>39</sup> Ar | <sup>38</sup> Ar/ <sup>39</sup> Ar | <sup>37</sup> Ar/ <sup>39</sup> Ar | <sup>36</sup> Ar/ <sup>39</sup> Ar | $^{40}{\rm Ar}^{*}/^{39}{\rm Ar}$ | %atm    | Ca/K   | Age (Ma) | $1\sigma$ error |
|----------|------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|---------|--------|----------|-----------------|
| 1100     | 0.074            | 27.302                             | 0.040                              | 0.033                              | 0.000                              | 27.266                            | 0.134   | 0.033  | 1403     | 1               |
| 1200     | 0.185            | 27.301                             | 0.039                              | 0.026                              | 0.000                              | 27.284                            | 0.061   | 0.026  | 1404     | 3               |
| 1300     | 0.041            | 27.258                             | 0.040                              | 0.005                              | 0.000                              | 27.263                            | -0.019  | 0.005  | 1403     | 2               |
| 1400     | 0.029            | 27.503                             | 0.040                              | 0.000                              | 0.000                              | 27.426                            | 0.281   | 0.000  | 1409     | 2               |
| 1600     | 0.015            | 27.250                             | 0.039                              | -0.003                             | 0.000                              | 27.336                            | -0.315  | -0.003 | 1406     | 4               |
| 1800     | 0.007            | 27.391                             | 0.039                              | -0.005                             | 0.000                              | 27.517                            | -0.461  | -0.005 | 1412     | 7               |
| 2000     | 0.004            | 27.620                             | 0.038                              | -0.038                             | -0.001                             | 27.879                            | -0.936  | -0.038 | 1425     | 11              |
| 2400     | 0.001            | 27.850                             | 0.037                              | -0.075                             | 0.000                              | 27.900                            | -0.181  | -0.075 | 1426     | 45              |
| 3000     | 0.000            | 27.468                             | 0.034                              | -0.345                             | -0.008                             | 29.864                            | -8.721  | -0.345 | 1494     | 111             |
| 4000     | 0.000            | 30.546                             | 0.046                              | -0.767                             | -0.015                             | 34.918                            | -14.312 | -0.767 | 1658     | 253             |
| J-value  | $= 0.0431 \pm 0$ | .0001                              |                                    |                                    |                                    |                                   |         |        |          |                 |
| Total ga | as age = 1404    | $\pm 2 \mathrm{Ma}$                |                                    |                                    |                                    |                                   |         |        |          |                 |
| a3a et10 | 03 hornblend     | e                                  |                                    |                                    |                                    |                                   |         |        |          |                 |
| 100      | 0.002            | 6.725                              | 0.088                              | 0.584                              | 0.018                              | 1.420                             | 78.881  | 0.584  | 109      | 65              |
| 200      | 0.000            | 16.938                             | 0.120                              | 0.275                              | 0.030                              | 7.964                             | 52.981  | 0.275  | 540      | 353             |
| 250      | 0.000            | 26.718                             | 0.060                              | 0.597                              | -0.044                             | 39.854                            | -49.164 | 0.597  | 1822     | 308             |
| 300      | 0.000            | 23.539                             | 0.118                              | 0.372                              | -0.038                             | 34.634                            | -47.134 | 0.372  | 1665     | 322             |
| 350      | 0.000            | 23.921                             | 0.082                              | 1.375                              | 0.001                              | 23.526                            | 1.653   | 1.375  | 1278     | 177             |
| 400      | 0.000            | 24.495                             | 0.058                              | 1.040                              | -0.008                             | 26.834                            | -9.549  | 1.040  | 1402     | 139             |
| 425      | 0.000            | 23.545                             | 0.068                              | 1.058                              | -0.004                             | 24.662                            | -4.744  | 1.058  | 1321     | 98              |
| 450      | 0.001            | 23.545                             | 0.089                              | 1.020                              | -0.012                             | 27.191                            | -15.482 | 1.020  | 1415     | 137             |
| 475      | 0.000            | 24.264                             | 0.099                              | 0.917                              | -0.005                             | 25.784                            | -6.261  | 0.917  | 1364     | 97              |
| 500      | 0.001            | 23.465                             | 0.113                              | 1.625                              | 0.006                              | 21.682                            | 7.599   | 1.625  | 1205     | 95              |
| 525      | 0.001            | 25.145                             | 0.160                              | 1.880                              | 0.007                              | 23.173                            | 7.844   | 1.880  | 1264     | 81              |
| 550      | 0.001            | 23.827                             | 0.169                              | 1.702                              | 0.005                              | 22.456                            | 5.752   | 1.702  | 1236     | 72              |
| 575      | 0.001            | 23.658                             | 0.170                              | 2.123                              | 0.003                              | 22.677                            | 4.148   | 2.123  | 1244     | 39              |
| 600      | 0.001            | 23.523                             | 0.183                              | 2.448                              | 0.004                              | 22.341                            | 5.026   | 2.448  | 1231     | 42              |
| 625      | 0.002            | 23.335                             | 0.191                              | 2.822                              | 0.003                              | 22.593                            | 3.182   | 2.822  | 1241     | 38              |
| 650      | 0.002            | 23.018                             | 0.215                              | 3.106                              | 0.003                              | 22.021                            | 4.334   | 3.106  | 1218     | 30              |
| 675      | 0.003            | 22.995                             | 0.224                              | 3.218                              | 0.002                              | 22.529                            | 2.026   | 3.218  | 1239     | 22              |
| 700      | 0.004            | 23.142                             | 0.230                              | 3.268                              | -0.001                             | 23.385                            | -1.049  | 3.268  | 1272     | 15              |
| 725      | 0.010            | 23.069                             | 0.239                              | 3.458                              | 0.001                              | 22.725                            | 1.492   | 3.458  | 1246     | 4               |
| 750      | 0.033            | 23.379                             | 0.244                              | 3.576                              | 0.000                              | 23.371                            | 0.034   | 3.576  | 1272     | 2               |
| 775      | 0.077            | 23.386                             | 0.244                              | 3.582                              | 0.000                              | 23.377                            | 0.039   | 3.582  | 1272     | 1               |
| 800      | 0.102            | 23.453                             | 0.244                              | 3.578                              | 0.000                              | 23.477                            | -0.101  | 3.578  | 1276     | 1               |
| 825      | 0.123            | 23.332                             | 0.243                              | 3.552                              | 0.000                              | 23.336                            | -0.015  | 3.552  | 1270     | 1               |
| 850      | 0.140            | 23.268                             | 0.243                              | 3.551                              | 0.000                              | 23.294                            | -0.112  | 3.551  | 1269     | 1               |
| 875      | 0.082            | 23.211                             | 0.243                              | 3.593                              | 0.000                              | 23,250                            | -0.171  | 3.593  | 1267     | 1               |
| 900      | 0.076            | 23.182                             | 0.244                              | 3.587                              | 0.000                              | 23.186                            | -0.015  | 3.587  | 1264     | 1               |
| 925      | 0.059            | 23.150                             | 0.243                              | 3.567                              | 0.000                              | 23.224                            | -0.322  | 3.567  | 1266     | 1               |
| 950      | 0.062            | 23.018                             | 0.244                              | 3 618                              | 0.000                              | 23.055                            | -0.164  | 3.618  | 1259     | 2               |
| 975      | 0.030            | 23.122                             | 0.243                              | 3.670                              | 0.000                              | 23,182                            | -0.260  | 3.670  | 1264     | 3               |
| 1000     | 0.021            | 23.244                             | 0.248                              | 3.751                              | 0.000                              | 23,199                            | 0.195   | 3.751  | 1265     | 3               |
| 1050     | 0.015            | 23.271                             | 0.243                              | 3.736                              | 0.000                              | 23.324                            | -0.226  | 3.736  | 1270     | 5               |
| 1100     | 0.011            | 23 379                             | 0.250                              | 4 044                              | -0.001                             | 23.598                            | -0.935  | 4.044  | 1281     | 8               |
| 1150     | 0.011            | 23.589                             | 0.248                              | 4.246                              | 0.000                              | 23.588                            | 0.004   | 4.246  | 1280     | 6               |
| 1200     | 0.015            | 23.384                             | 0.243                              | 3.744                              | 0.000                              | 23.331                            | 0.229   | 3 744  | 1270     | 6               |
| 1300     | 0.006            | 23.220                             | 0.246                              | 4.012                              | 0.000                              | 23,203                            | 0.070   | 4.012  | 1265     | 9               |
| 1400     | 0.014            | 22,980                             | 0.247                              | 3.926                              | 0.000                              | 23.121                            | -0.615  | 3.926  | 1262     | 5               |
| 1500     | 0.005            | 23.227                             | 0.253                              | 4,410                              | 0.001                              | 22,899                            | 1.412   | 4,410  | 1253     | 13              |
| 1750     | 0.029            | 22.918                             | 0.247                              | 3.795                              | 0.000                              | 22.932                            | -0.063  | 3.795  | 1254     | 2               |
| 2000     | 0.023            | 22.861                             | 0.246                              | 3.929                              | 0.000                              | 22.891                            | -0.133  | 3.929  | 1253     | 3               |
| 2250     | 0.002            | 22.216                             | 0.245                              | 3.861                              | -0.001                             | 22.603                            | -1.744  | 3.861  | 1241     | 47              |

| Power               | Fraction                         | <sup>40</sup> Ar/ <sup>39</sup> Ar | <sup>38</sup> Ar/ <sup>39</sup> Ar | <sup>37</sup> Ar/ <sup>39</sup> Ar | <sup>36</sup> Ar/ <sup>39</sup> Ar | $^{40}{\rm Ar}^{*}/^{39}{\rm Ar}$ | %atm    | Ca/K   | Age (Ma) | $1\sigma$ error |
|---------------------|----------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|---------|--------|----------|-----------------|
| 2500                | 0.008                            | 22.852                             | 0.245                              | 3.604                              | 0.000                              | 22.774                            | 0.338   | 3.604  | 1248     | 12              |
| 3000                | 0.021                            | 22.514                             | 0.242                              | 3.650                              | 0.000                              | 22.381                            | 0.588   | 3.650  | 1233     | 4               |
| 3500                | 0.004                            | 22.397                             | 0.239                              | 3.596                              | -0.002                             | 22.948                            | -2.459  | 3.596  | 1255     | 16              |
| 4000                | 0.001                            | 22.815                             | 0.254                              | 3.833                              | 0.004                              | 21.628                            | 5.205   | 3.833  | 1202     | 93              |
| J-value             | $= 0.0430 \pm 0$                 | .0001                              |                                    |                                    |                                    |                                   |         |        |          |                 |
| Total ga            | s age = 1265                     | $\pm 3$ Ma                         |                                    |                                    |                                    |                                   |         |        |          |                 |
| c5b et 1            | 23 biotite                       |                                    |                                    |                                    |                                    |                                   |         |        |          |                 |
| 50                  | 0.003                            | 5.437                              | 0.059                              | 0.022                              | 0.004                              | 4.357                             | 19.862  | 0.022  | 309      | 40              |
| 75                  | 0.000                            | 18.972                             | 0.043                              | -0.153                             | -0.028                             | 27.314                            | -43.964 | -0.153 | 1399     | 180             |
| 100                 | 0.001                            | 20.378                             | 0.041                              | -0.460                             | 0.001                              | 20.027                            | 1.722   | -0.460 | 1119     | 129             |
| 125                 | 0.001                            | 19.530                             | 0.039                              | 0.222                              | 0.007                              | 17.345                            | 11.187  | 0.222  | 1004     | 84              |
| 150                 | 0.002                            | 20.432                             | 0.053                              | -0.002                             | -0.001                             | 20.746                            | -1.534  | -0.002 | 1149     | 47              |
| 175                 | 0.003                            | 20.216                             | 0.058                              | -0.108                             | -0.003                             | 21.152                            | -4.628  | -0.108 | 1165     | 26              |
| 200                 | 0.000                            | 21.805                             | 0.001                              | -1.452                             | 0.001                              | 21.644                            | 0.741   | -1.452 | 1185     | 469             |
| 225                 | 0.000                            | 21.144                             | 0.050                              | -0.935                             | -0.003                             | 22.176                            | -4.882  | -0.935 | 1206     | 245             |
| 250                 | 0.001                            | 20.865                             | 0.045                              | -0.178                             | 0.011                              | 17.643                            | 15.442  | -0.178 | 1017     | 87              |
| 275                 | 0.001                            | 20.906                             | 0.057                              | 0.013                              | 0.004                              | 19.601                            | 6.245   | 0.013  | 1101     | 43              |
| 300                 | 0.002                            | 21.259                             | 0.056                              | -0.039                             | 0.000                              | 21.380                            | -0.569  | -0.039 | 1174     | 28              |
| 350                 | 0.023                            | 21.124                             | 0.057                              | 0.011                              | 0.000                              | 21.065                            | 0.280   | 0.011  | 1162     | 3               |
| 400                 | 0.036                            | 20.914                             | 0.056                              | 0.005                              | 0.000                              | 20.949                            | -0.166  | 0.005  | 1157     | 2               |
| 450                 | 0.038                            | 20.976                             | 0.056                              | 0.005                              | 0.000                              | 20.997                            | -0.101  | 0.005  | 1159     | 2               |
| 500                 | 0.046                            | 20.943                             | 0.057                              | 0.009                              | 0.000                              | 20.959                            | -0.076  | 0.009  | 1157     | 2               |
| 550                 | 0.058                            | 20.930                             | 0.056                              | 0.003                              | 0.000                              | 20.945                            | -0.072  | 0.003  | 1157     | 2               |
| 600                 | 0.067                            | 20.911                             | 0.056                              | 0.009                              | 0.000                              | 20.889                            | 0.105   | 0.009  | 1154     | 1               |
| 650                 | 0.062                            | 20.812                             | 0.056                              | 0.004                              | 0.000                              | 20.792                            | 0.098   | 0.004  | 1151     | 2               |
| 700                 | 0.059                            | 20.891                             | 0.057                              | 0.000                              | 0.000                              | 20.835                            | 0.272   | 0.000  | 1152     | 2               |
| 750                 | 0.107                            | 20.863                             | 0.056                              | 0.001                              | 0.000                              | 20.860                            | 0.013   | 0.001  | 1153     | 1               |
| 800                 | 0.083                            | 20.841                             | 0.057                              | 0.000                              | 0.000                              | 20.829                            | 0.057   | 0.000  | 1152     | 1               |
| 850                 | 0.072                            | 20.832                             | 0.055                              | 0.001                              | 0.000                              | 20.845                            | -0.058  | 0.001  | 1153     | 1               |
| 900                 | 0.045                            | 20.814                             | 0.057                              | 0.001                              | 0.000                              | 20.801                            | 0.062   | 0.001  | 1151     | 2               |
| 950                 | 0.050                            | 20.884                             | 0.057                              | -0.002                             | 0.000                              | 20.905                            | -0.097  | -0.002 | 1155     | 2               |
| 1000                | 0.034                            | 20.841                             | 0.055                              | 0.004                              | 0.000                              | 20.807                            | 0.165   | 0.004  | 1151     | 3               |
| 1100                | 0.061                            | 20.783                             | 0.056                              | 0.003                              | 0.000                              | 20.714                            | 0.328   | 0.003  | 1147     | 2               |
| 1200                | 0.050                            | 20.799                             | 0.056                              | 0.006                              | 0.000                              | 20.731                            | 0.328   | 0.006  | 1148     | 2               |
| 1300                | 0.018                            | 20.760                             | 0.055                              | 0.005                              | 0.000                              | 20.662                            | 0.476   | 0.005  | 1145     | 4               |
| 1400                | 0.034                            | 20.813                             | 0.056                              | 0.001                              | 0.000                              | 20.773                            | 0.196   | 0.001  | 1150     | 2               |
| 1600                | 0.027                            | 20.865                             | 0.055                              | 0.002                              | 0.000                              | 20.938                            | -0.350  | 0.002  | 1156     | 5               |
| 1800                | 0.013                            | 20.936                             | 0.057                              | 0.032                              | 0.000                              | 21.069                            | -0.636  | 0.032  | 1162     | 6               |
| 2000                | 0.002                            | 21.462                             | 0.056                              | 0.003                              | 0.001                              | 21.106                            | 1.660   | 0.003  | 1163     | 45              |
| 2400                | 0.001                            | 21.593                             | 0.046                              | 0.170                              | -0.005                             | 23.080                            | -6.891  | 0.170  | 1242     | 96              |
| 3000                | 0.000                            | 26.951                             | 0.029                              | 0.393                              | 0.010                              | 24.084                            | 10.641  | 0.393  | 1280     | 346             |
| 4000                | 0.000                            | 31.813                             | 0.066                              | 0.434                              | 0.048                              | 17.705                            | 44.347  | 0.434  | 1020     | 399             |
| J-value<br>Total ga | $= 0.0429 \pm 0$<br>s age = 1151 | .0001<br>± 2 Ma                    |                                    |                                    |                                    |                                   |         |        |          |                 |
| d3b biot            | tite et 125                      |                                    |                                    |                                    |                                    |                                   |         |        |          |                 |
| 50                  | 0.002                            | 25.110                             | 0.029                              | -0.276                             | 0.029                              | 16.590                            | 33.933  | -0.276 | 567      | 353             |
| 100                 | 0.014                            | 35.993                             | 0.010                              | -0.055                             | 0.005                              | 34.566                            | 3.964   | -0.055 | 1029     | 39              |
| 200                 | 0.170                            | 37.466                             | 0.012                              | 0.000                              | 0.000                              | 37.393                            | 0.196   | 0.000  | 1092     | 3               |
| 275                 | 0.189                            | 37.621                             | 0.013                              | -0.002                             | 0.000                              | 37,507                            | 0 304   | -0.002 | 1095     | 3               |
| 350                 | 0.124                            | 37.479                             | 0.013                              | 0.011                              | 0.000                              | 37.493                            | -0.036  | 0.011  | 1094     | 5               |
| 425                 | 0.097                            | 37.730                             | 0.013                              | 0.039                              | 0.000                              | 37.599                            | 0.348   | 0.039  | 1097     | 5               |
| 500                 | 0.190                            | 37.555                             | 0.012                              | 0.025                              | 0.000                              | 37.507                            | 0.129   | 0.025  | 1095     | 3               |
| 575                 | 0.146                            | 37.794                             | 0.012                              | 0.001                              | 0.000                              | 37.869                            | -0.197  | 0.001  | 1102     | 4               |
|                     |                                  |                                    |                                    |                                    |                                    |                                   |         |        |          |                 |

Table A.2 (Continued)

| Power    | Fraction        | <sup>40</sup> Ar/ <sup>39</sup> Ar | <sup>38</sup> Ar/ <sup>39</sup> Ar | <sup>37</sup> Ar/ <sup>39</sup> Ar | <sup>36</sup> Ar/ <sup>39</sup> Ar | <sup>40</sup> Ar*/ <sup>39</sup> Ar | %atm    | Ca/K           | Age (Ma) | $1\sigma$ error |
|----------|-----------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|---------|----------------|----------|-----------------|
| 650      | 0.042           | 37.537                             | 0.013                              | 0.006                              | -0.001                             | 37.923                              | -1.029  | 0.006          | 1104     | 14              |
| 725      | 0.012           | 37.208                             | 0.008                              | 0.056                              | 0.000                              | 37.227                              | -0.053  | 0.056          | 1088     | 35              |
| 1000     | 0.011           | 37.545                             | 0.014                              | -0.001                             | 0.003                              | 36.623                              | 2.455   | -0.001         | 1075     | 48              |
| 3000     | 0.003           | 36.957                             | 0.008                              | 0.062                              | -0.018                             | 42.337                              | -14.557 | 0.062          | 1197     | 132             |
| J-value: | $= 0.02224 \pm$ | 0.00004                            |                                    |                                    |                                    |                                     |         |                |          |                 |
| Total ga | s age = 1094    | $.3 \pm 2.3$ Ma                    |                                    |                                    |                                    |                                     |         |                |          |                 |
| MI88-b5  | 55a 314 horn    | blende                             |                                    |                                    |                                    |                                     |         |                |          |                 |
| 100      | 0.003           | 50.086                             | 0.404                              | 1.381                              | 0.054                              | 34.248                              | 31.622  | 1.381          | 1678     | 12              |
| 200      | 0.012           | 16.053                             | 0.079                              | 0.688                              | 0.010                              | 13.191                              | 17.832  | 0.688          | 838      | 7               |
| 250      | 0.007           | 17.683                             | 0.041                              | 0.695                              | 0.006                              | 15.889                              | 10.145  | 0.695          | 970      | 7               |
| 300      | 0.009           | 22.873                             | 0.034                              | 0.653                              | 0.003                              | 21.930                              | 4.126   | 0.653          | 1234     | 5               |
| 350      | 0.014           | 18.423                             | 0.032                              | 0.864                              | 0.004                              | 17.288                              | 6.161   | 0.864          | 1035     | 4               |
| 400      | 0.013           | 20.640                             | 0.029                              | 1.221                              | 0.003                              | 19.895                              | 3.611   | 1.221          | 1150     | 4               |
| 425      | 0.010           | 21.561                             | 0.031                              | 0.892                              | 0.003                              | 20.720                              | 3.899   | 0.892          | 1184     | 4               |
| 450      | 0.010           | 21.918                             | 0.033                              | 0.947                              | 0.001                              | 21.568                              | 1.600   | 0.947          | 1220     | 4               |
| 475      | 0.010           | 23.483                             | 0.038                              | 1.059                              | 0.002                              | 22.959                              | 2.232   | 1.059          | 1276     | 4               |
| 500      | 0.010           | 20.608                             | 0.041                              | 1.223                              | 0.001                              | 20.194                              | 2.011   | 1.223          | 1162     | 5               |
| 525      | 0.011           | 19.943                             | 0.046                              | 1.381                              | 0.001                              | 19.577                              | 1.836   | 1.381          | 1136     | 4               |
| 550      | 0.013           | 19.113                             | 0.051                              | 1.486                              | 0.002                              | 18.571                              | 2.837   | 1.486          | 1092     | 4               |
| 575      | 0.014           | 19.742                             | 0.061                              | 1.750                              | 0.002                              | 19.245                              | 2.517   | 1.750          | 1122     | 4               |
| 600      | 0.014           | 19.639                             | 0.071                              | 2.033                              | 0.002                              | 19.169                              | 2.396   | 2.033          | 1118     | 5               |
| 625      | 0.014           | 20.283                             | 0.084                              | 2.325                              | 0.001                              | 19.868                              | 2.046   | 2,325          | 1148     | 4               |
| 650      | 0.014           | 20.619                             | 0.097                              | 2.697                              | 0.001                              | 20,199                              | 2.037   | 2.697          | 1163     | 5               |
| 675      | 0.017           | 21.674                             | 0.144                              | 3.767                              | 0.001                              | 21.355                              | 1.472   | 3,767          | 1211     | 4               |
| 700      | 0.017           | 21.883                             | 0.151                              | 3 956                              | 0.001                              | 21.688                              | 0.890   | 3 956          | 1225     | 5               |
| 725      | 0.016           | 21.839                             | 0.152                              | 3 940                              | 0.000                              | 21.600                              | 0.650   | 3 940          | 1225     | 3               |
| 750      | 0.030           | 23.923                             | 0.232                              | 5 935                              | 0.000                              | 23.806                              | 0.490   | 5 935          | 1309     | 2               |
| 775      | 0.030           | 24 609                             | 0.252                              | 6 692                              | 0.000                              | 24 550                              | 0.490   | 6 692          | 1338     | 1               |
| 800      | 0.040           | 24.335                             | 0.258                              | 6 543                              | 0.000                              | 24.231                              | 0.425   | 6 543          | 1326     | 2               |
| 825      | 0.040           | 24.333                             | 0.250                              | 6 742                              | 0.000                              | 24.231                              | 0.425   | 6 742          | 1320     | 2               |
| 850      | 0.043           | 24.544                             | 0.265                              | 6 734                              | 0.000                              | 24.520                              | 0.354   | 6 734          | 1338     | 2               |
| 875      | 0.042           | 24.020                             | 0.269                              | 6 748                              | 0.000                              | 24.333                              | 0.334   | 6748           | 1363     | 2               |
| 900      | 0.047           | 25.272                             | 0.209                              | 7.024                              | 0.000                              | 25.198                              | 0.294   | 7 024          | 1303     | 1               |
| 025      | 0.002           | 25.552                             | 0.230                              | 7.024                              | 0.000                              | 25.400                              | 0.230   | 7.024          | 1375     | 1               |
| 925      | 0.002           | 25.974                             | 0.277                              | 6 740                              | 0.000                              | 25.890                              | 0.322   | 6.740          | 1309     | 1               |
| 930      | 0.043           | 25.009                             | 0.203                              | 0.740                              | 0.000                              | 25.559                              | 0.430   | 6.660          | 1377     | 2               |
| 975      | 0.041           | 23.360                             | 0.238                              | 5.054                              | 0.000                              | 25.510                              | 0.297   | 0.009<br>5.054 | 1373     | 2               |
| 1000     | 0.020           | 24.578                             | 0.228                              | 5.934                              | 0.001                              | 24.417                              | 0.030   | 5.934          | 1333     | 2               |
| 1050     | 0.034           | 24.709                             | 0.233                              | 5.924                              | 0.000                              | 24.592                              | 0.474   | 5.924          | 1340     | 2               |
| 1100     | 0.023           | 23.129                             | 0.198                              | 5.209                              | 0.001                              | 22.967                              | 0.698   | 5.209          | 1276     | 3               |
| 1150     | 0.023           | 22.820                             | 0.187                              | 4.889                              | 0.001                              | 22.602                              | 0.982   | 4.889          | 1202     | 3               |
| 1200     | 0.019           | 23.437                             | 0.205                              | 5.483                              | 0.001                              | 23.186                              | 1.070   | 5.483          | 1285     | 3               |
| 1300     | 0.028           | 25.182                             | 0.209                              | 5.264                              | 0.001                              | 25.007                              | 0.693   | 5.264          | 1356     | 2               |
| 1400     | 0.034           | 25.299                             | 0.256                              | 6.610                              | 0.001                              | 25.084                              | 0.852   | 6.610          | 1359     | 2               |
| 1500     | 0.021           | 25.527                             | 0.258                              | 6.968                              | 0.001                              | 25.347                              | 0.705   | 6.968          | 1369     | 2               |
| 1750     | 0.019           | 25.885                             | 0.257                              | 7.095                              | 0.001                              | 25.562                              | 1.249   | 7.095          | 1377     | 4               |
| 2000     | 0.029           | 24.697                             | 0.253                              | 7.453                              | 0.001                              | 24.338                              | 1.455   | 7.453          | 1330     | 2               |
| 2250     | 0.035           | 24.764                             | 0.250                              | 8.007                              | 0.002                              | 24.274                              | 1.978   | 8.007          | 1328     | 2               |
| 2500     | 0.009           | 20.896                             | 0.186                              | 9.483                              | 0.004                              | 19.800                              | 5.246   | 9.483          | 1146     | 7               |
| 3000     | 0.014           | 19.372                             | 0.125                              | 7.529                              | 0.004                              | 18.309                              | 5.488   | 7.529          | 1080     | 4               |
| 3500     | 0.000           | 30.287                             | 0.256                              | 17.604                             | 0.002                              | 29.763                              | 1.728   | 17.604         | 1529     | 113             |
| 4000     | 0.000           | 21.987                             | 0.152                              | 12.446                             | -0.049                             | 36.563                              | -66.292 | 12.446         | 1750     | 408             |

J-value = 0.0447  $\pm$  0.0003

Total gas age =  $1299 \pm 5$  Ma

Table A.2 (Continued)

| Power                 | Fraction                          | <sup>40</sup> Ar/ <sup>39</sup> Ar | <sup>38</sup> Ar/ <sup>39</sup> Ar | <sup>37</sup> Ar/ <sup>39</sup> Ar | <sup>36</sup> Ar/ <sup>39</sup> Ar | <sup>40</sup> Ar <sup>*</sup> / <sup>39</sup> Ar | %atm    | Ca/K   | Age (Ma)   | $1\sigma$ error |
|-----------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|--------------------------------------------------|---------|--------|------------|-----------------|
| MI88-b                | 51a 126 biot                      | ite                                |                                    |                                    |                                    |                                                  |         |        | - · /      |                 |
| 50                    | 0.003                             | 11.688                             | 0.062                              | 0.189                              | 0.000                              | 11.639                                           | 0.414   | 0.189  | 757        | 17              |
| 75                    | 0.011                             | 16.591                             | 0.061                              | 0.055                              | 0.000                              | 16.450                                           | 0.848   | 0.055  | 996        | 4               |
| 100                   | 0.023                             | 20.305                             | 0.065                              | 0.014                              | 0.000                              | 20.232                                           | 0.359   | 0.014  | 1164       | 3               |
| 125                   | 0.037                             | 21.191                             | 0.067                              | 0.007                              | 0.000                              | 21.180                                           | 0.051   | 0.007  | 1204       | 2               |
| 150                   | 0.056                             | 21.281                             | 0.066                              | 0.003                              | 0.000                              | 21.274                                           | 0.034   | 0.003  | 1208       | 2               |
| 175                   | 0.071                             | 21.338                             | 0.066                              | 0.003                              | 0.000                              | 21.335                                           | 0.016   | 0.003  | 1210       | 1               |
| 200                   | 0.077                             | 21.404                             | 0.066                              | 0.003                              | 0.000                              | 21.405                                           | -0.004  | 0.003  | 1213       | 1               |
| 225                   | 0.067                             | 21.488                             | 0.066                              | 0.010                              | 0.000                              | 21.495                                           | -0.031  | 0.010  | 1217       | 1               |
| 250                   | 0.052                             | 21.514                             | 0.066                              | 0.020                              | 0.000                              | 21.525                                           | -0.053  | 0.020  | 1218       | 1               |
| 275                   | 0.038                             | 21.465                             | 0.066                              | 0.025                              | 0.000                              | 21.452                                           | 0.059   | 0.025  | 1215       | 1               |
| 300                   | 0.029                             | 21.470                             | 0.066                              | 0.025                              | 0.000                              | 21.569                                           | -0.464  | 0.025  | 1220       | 2               |
| 350                   | 0.035                             | 21.366                             | 0.067                              | 0.028                              | 0.000                              | 21.357                                           | 0.041   | 0.028  | 1211       | 2               |
| 400                   | 0.048                             | 21.328                             | 0.067                              | 0.017                              | 0.000                              | 21.360                                           | -0.151  | 0.017  | 1212       | 1               |
| 450                   | 0.070                             | 21.276                             | 0.067                              | 0.012                              | 0.000                              | 21.292                                           | -0.074  | 0.012  | 1209       | 1               |
| 500                   | 0.080                             | 21.369                             | 0.066                              | 0.012                              | 0.000                              | 21.367                                           | 0.010   | 0.012  | 1212       | 1               |
| 550                   | 0.074                             | 21.372                             | 0.066                              | 0.010                              | 0.000                              | 21.369                                           | 0.018   | 0.010  | 1212       | 1               |
| 600                   | 0.055                             | 21.392                             | 0.067                              | 0.014                              | 0.000                              | 21.414                                           | -0.104  | 0.014  | 1214       | 1               |
| 650                   | 0.040                             | 21.469                             | 0.066                              | 0.011                              | 0.000                              | 21.495                                           | -0.121  | 0.011  | 1217       | 1               |
| 700                   | 0.037                             | 21.468                             | 0.067                              | 0.015                              | 0.000                              | 21.464                                           | 0.020   | 0.015  | 1216       | 1               |
| 750                   | 0.027                             | 21.460                             | 0.067                              | 0.021                              | 0.000                              | 21.521                                           | -0.282  | 0.021  | 1218       | 2               |
| 800                   | 0.018                             | 21.375                             | 0.066                              | 0.017                              | 0.000                              | 21.407                                           | -0.151  | 0.017  | 1213       | 3               |
| 850                   | 0.011                             | 21.393                             | 0.065                              | 0.018                              | 0.000                              | 21.446                                           | -0.245  | 0.018  | 1215       | 4               |
| 900                   | 0.011                             | 21.465                             | 0.066                              | 0.030                              | 0.000                              | 21.453                                           | 0.058   | 0.030  | 1215       | 5               |
| 950                   | 0.007                             | 21.492                             | 0.067                              | 0.045                              | 0.000                              | 21.468                                           | 0.110   | 0.045  | 1216       | 6               |
| 1000                  | 0.005                             | 21.463                             | 0.067                              | 0.085                              | 0.000                              | 21.399                                           | 0.299   | 0.085  | 1213       | 6               |
| 1100                  | 0.006                             | 21.538                             | 0.064                              | 0.062                              | -0.001                             | 21.810                                           | -1.263  | 0.062  | 1230       | 6               |
| 1200                  | 0.005                             | 21.657                             | 0.065                              | 0.085                              | 0.000                              | 21.716                                           | -0.273  | 0.085  | 1226       | 7               |
| 1300                  | 0.004                             | 21.683                             | 0.066                              | 0.107                              | -0.001                             | 21.906                                           | -1.026  | 0.107  | 1234       | 7               |
| 1400                  | 0.002                             | 21.512                             | 0.062                              | 0.168                              | 0.000                              | 21.497                                           | 0.071   | 0.168  | 1217       | 20              |
| 1600                  | 0.001                             | 21.548                             | 0.068                              | 0.110                              | -0.001                             | 21.866                                           | -1.475  | 0.110  | 1232       | 64              |
| 1800                  | 0.000                             | 21.214                             | 0.071                              | 0.258                              | -0.001                             | 21.583                                           | -1.741  | 0.258  | 1221       | 64              |
| 2000                  | 0.000                             | 21.916                             | 0.068                              | -0.042                             | 0.009                              | 19.147                                           | 12.637  | -0.042 | 1118       | 210             |
| 2400                  | 0.000                             | 22.411                             | 0.070                              | -0.010                             | -0.011                             | 25.793                                           | -15.087 | -0.010 | 1386       | 110             |
| 3000                  | 0.000                             | 21.432                             | 0.071                              | -0.140                             | 0.037                              | 10.566                                           | 50.700  | -0.140 | 699        | 351             |
| 4000                  | 0.000                             | -1.006                             | -0.949                             | 2.270                              | 0.193                              | -58.113                                          | ######  | 2.270  | #####      | 10248           |
| J-value =<br>Total ga | $= 0.04482 \pm$<br>s age $= 1208$ | 0.00008<br>3.6 ± 1.6 Ma            |                                    |                                    |                                    |                                                  |         |        |            |                 |
| MI88-b/               | 17a 305h bic                      | otite                              |                                    |                                    |                                    |                                                  |         |        |            |                 |
| 50                    | 0.003                             | 8 035                              | 0.216                              | 0.098                              | 0.008                              | 5 735                                            | 28 627  | 0.008  | 413        | 21              |
| 75                    | 0.003                             | 8.600                              | 0.210                              | 0.015                              | 0.003                              | 5.755<br>7.767                                   | 10.619  | 0.070  | 413<br>540 | 17              |
| 100                   | 0.003                             | 18 823                             | 0.200                              | -0.010                             | 0.003                              | 17 780                                           | 5 542   | _0.015 | 1059       | 11              |
| 125                   | 0.005                             | 10.328                             | 0.210                              | -0.010                             | 0.004                              | 18.082                                           | 1 700   | 0.001  | 1112       | 5               |
| 123                   | 0.009                             | 20.027                             | 0.200                              | 0.001                              | 0.001                              | 10.982                                           | 0.663   | 0.001  | 1112       | 3               |
| 175                   | 0.020                             | 20.027                             | 0.201                              | 0.002                              | 0.000                              | 20.354                                           | 0.005   | 0.002  | 1152       | 1               |
| 200                   | 0.032                             | 20.391                             | 0.203                              | -0.002                             | 0.000                              | 20.334                                           | 0.185   | -0.002 | 1171       | 2               |
| 200                   | 0.023                             | 20.317                             | 0.203                              | 0.000                              | 0.000                              | 20.328                                           | -0.033  | 0.000  | 11/9       | 2               |
| 223                   | 0.024                             | 20.010                             | 0.202                              | 0.000                              | 0.000                              | 20.030                                           | -0.000  | 0.000  | 1103       | 3<br>2          |
| 230                   | 0.029                             | 20.049                             | 0.204                              | 0.003                              | 0.000                              | 20.037                                           | 0.039   | 0.003  | 1103       | 2               |
| 200                   | 0.030                             | 20.030                             | 0.202                              | -0.002                             | 0.000                              | 20.044                                           | 0.020   | -0.002 | 1103       | 2               |
| 250                   | 0.029                             | 20.011                             | 0.203                              | 0.000                              | 0.000                              | 20.030                                           | -0.222  | 0.000  | 1104       | 2<br>1          |
| 330                   | 0.041                             | 20.710                             | 0.202                              | 0.002                              | 0.000                              | 20.740                                           | -0.113  | 0.002  | 110/       | 1               |
| 400                   | 0.047                             | 20.812                             | 0.203                              | 0.001                              | 0.000                              | 20.819                                           | -0.035  | 0.001  | 1191       | 2               |
| 450                   | 0.047                             | 20.854                             | 0.203                              | 0.004                              | 0.000                              | 20.852                                           | 0.008   | 0.004  | 1192       | 1               |

Table A.2 (Continued)

| Power               | Fraction                | $^{40}$ Ar/ $^{39}$ Ar | $^{38}\mathrm{Ar}/^{39}\mathrm{Ar}$ | $^{37}$ Ar/ $^{39}$ Ar | <sup>36</sup> Ar/ <sup>39</sup> Ar | $^{40}\mathrm{Ar}^{*}/^{39}\mathrm{Ar}$ | %atm   | Ca/K   | Age (Ma) | $1\sigma$ error |
|---------------------|-------------------------|------------------------|-------------------------------------|------------------------|------------------------------------|-----------------------------------------|--------|--------|----------|-----------------|
| 500                 | 0.047                   | 20.911                 | 0.203                               | 0.003                  | 0.000                              | 20.918                                  | -0.034 | 0.003  | 1195     | 1               |
| 550                 | 0.046                   | 20.962                 | 0.204                               | 0.007                  | 0.000                              | 20.964                                  | -0.008 | 0.007  | 1197     | 1               |
| 600                 | 0.045                   | 20.972                 | 0.204                               | 0.006                  | 0.000                              | 20.964                                  | 0.039  | 0.006  | 1197     | 2               |
| 650                 | 0.049                   | 20.982                 | 0.203                               | 0.005                  | 0.000                              | 20.977                                  | 0.022  | 0.005  | 1197     | 1               |
| 700                 | 0.163                   | 20.975                 | 0.203                               | 0.004                  | 0.000                              | 20.970                                  | 0.027  | 0.004  | 1197     | 3               |
| 750                 | 0.083                   | 20.704                 | 0.202                               | 0.003                  | 0.000                              | 20.694                                  | 0.050  | 0.003  | 1186     | 1               |
| 800                 | 0.087                   | 20.672                 | 0.201                               | 0.002                  | 0.000                              | 20.671                                  | 0.002  | 0.002  | 1185     | 1               |
| 850                 | 0.071                   | 20.615                 | 0.202                               | 0.002                  | 0.000                              | 20.609                                  | 0.028  | 0.002  | 1182     | 1               |
| 900                 | 0.035                   | 20.621                 | 0.200                               | 0.001                  | 0.000                              | 20.632                                  | -0.055 | 0.001  | 1183     | 1               |
| 950                 | 0.016                   | 20.657                 | 0.200                               | -0.016                 | 0.000                              | 20.637                                  | 0.096  | -0.016 | 1183     | 3               |
| 1000                | 0.006                   | 20.519                 | 0.200                               | -0.051                 | 0.000                              | 20.604                                  | -0.411 | -0.051 | 1182     | 6               |
| 1100                | 0.004                   | 20.695                 | 0.198                               | -0.078                 | -0.001                             | 20.894                                  | -0.961 | -0.078 | 1194     | 11              |
| 1200                | 0.004                   | 20.834                 | 0.196                               | -0.071                 | 0.000                              | 20.697                                  | 0.657  | -0.071 | 1186     | 10              |
| 1300                | 0.001                   | 20.554                 | 0.199                               | -0.245                 | 0.002                              | 20.005                                  | 2.674  | -0.245 | 1156     | 24              |
| 1400                | 0.001                   | 20.908                 | 0.203                               | -0.137                 | 0.002                              | 20.452                                  | 2.181  | -0.137 | 1175     | 22              |
| 1600                | 0.000                   | 20.360                 | 0.200                               | 0.117                  | -0.006                             | 22.194                                  | -9.010 | 0.117  | 1247     | 125             |
| 1800                | 0.000                   | 20.820                 | 0.211                               | 0.042                  | 0.011                              | 17.638                                  | 15.280 | 0.042  | 1052     | 117             |
| 2000                | 0.001                   | 21.325                 | 0.210                               | 0.170                  | 0.004                              | 20.276                                  | 4.918  | 0.170  | 1168     | 70              |
| 2400                | 0.001                   | 21.186                 | 0.201                               | 0.100                  | 0.002                              | 20.487                                  | 3.299  | 0.100  | 1177     | 63              |
| 3000                | 0.000                   | 21.472                 | 0.193                               | 0.356                  | 0.008                              | 19.243                                  | 10.378 | 0.356  | 1124     | 151             |
| 4000                | 0.000                   | 23.304                 | 0.194                               | 0.176                  | 0.044                              | 10.268                                  | 55.937 | 0.176  | 684      | 577             |
| J-value<br>Total ga | =0.04491±<br>s age=1183 | 0.00009<br>.4 ± 1.8 Ma |                                     |                        |                                    |                                         |        |        |          |                 |
| MI88-b4             | 46a 122 bioti           | ite                    |                                     |                        |                                    |                                         |        |        |          |                 |
| 50                  | 0.004                   | 4.827                  | 0.114                               | 0.540                  | 0.003                              | 3.841                                   | 20.427 | 0.540  | 287      | 11              |
| 75                  | 0.009                   | 4.837                  | 0.094                               | 0.141                  | 0.001                              | 4.489                                   | 7.187  | 0.141  | 331      | 7               |
| 100                 | 0.007                   | 14.770                 | 0.133                               | 0.055                  | 0.002                              | 14.192                                  | 3.918  | 0.055  | 890      | 7               |
| 125                 | 0.018                   | 16.720                 | 0.143                               | 0.030                  | 0.001                              | 16.536                                  | 1.100  | 0.030  | 1002     | 2               |
| 150                 | 0.029                   | 18.395                 | 0.152                               | 0.012                  | 0.000                              | 18.321                                  | 0.400  | 0.012  | 1083     | 2               |
| 175                 | 0.034                   | 18.858                 | 0.155                               | 0.010                  | 0.000                              | 18.833                                  | 0.130  | 0.010  | 1106     | 1               |
| 200                 | 0.043                   | 18.961                 | 0.156                               | 0.010                  | 0.000                              | 19.006                                  | -0.235 | 0.010  | 1114     | 1               |
| 225                 | 0.051                   | 19.046                 | 0.157                               | 0.008                  | 0.000                              | 19.072                                  | -0.138 | 0.008  | 1116     | 1               |
| 250                 | 0.055                   | 19.068                 | 0.157                               | 0.009                  | 0.000                              | 19.071                                  | -0.015 | 0.009  | 1116     | 1               |
| 275                 | 0.057                   | 19.124                 | 0.157                               | 0.012                  | 0.000                              | 19.149                                  | -0.132 | 0.012  | 1120     | 1               |
| 300                 | 0.053                   | 19.128                 | 0.157                               | 0.013                  | 0.000                              | 19.152                                  | -0.124 | 0.013  | 1120     | I               |
| 350                 | 0.069                   | 19.236                 | 0.159                               | 0.026                  | 0.000                              | 19.229                                  | 0.037  | 0.026  | 1123     | 1               |
| 400                 | 0.071                   | 19.395                 | 0.158                               | 0.030                  | 0.000                              | 19.427                                  | -0.165 | 0.030  | 1132     | I               |
| 450                 | 0.072                   | 19.439                 | 0.158                               | 0.039                  | 0.000                              | 19.471                                  | -0.165 | 0.039  | 1134     | 1               |
| 500                 | 0.089                   | 19.179                 | 0.158                               | 0.038                  | 0.000                              | 19.186                                  | -0.034 | 0.038  | 1121     | l               |
| 550                 | 0.095                   | 19.007                 | 0.156                               | 0.051                  | 0.000                              | 19.014                                  | -0.038 | 0.051  | 1114     | 1               |
| 600                 | 0.059                   | 18.957                 | 0.156                               | 0.037                  | 0.000                              | 18.963                                  | -0.034 | 0.037  | 1112     | 1               |
| 650                 | 0.036                   | 18.954                 | 0.156                               | 0.012                  | 0.000                              | 18.977                                  | -0.120 | 0.012  | 1112     | 2               |
| 700                 | 0.040                   | 18.910                 | 0.155                               | 0.038                  | 0.000                              | 18.962                                  | -0.274 | 0.038  | 1112     | 1               |
| /50                 | 0.026                   | 18.948                 | 0.155                               | 0.010                  | 0.000                              | 19.017                                  | -0.363 | 0.010  | 1114     | 2               |
| 800                 | 0.010                   | 18.930                 | 0.156                               | 0.014                  | 0.000                              | 19.010                                  | -0.421 | 0.014  | 1114     | 5               |
| 850                 | 0.011                   | 18.93/                 | 0.154                               | 0.001                  | 0.000                              | 19.018                                  | -0.420 | 0.001  | 1114     | 5               |
| 900                 | 0.010                   | 18.900                 | 0.154                               | 0.015                  | 0.000                              | 19.077                                  | -0.585 | 0.015  | 1117     | 5<br>7          |
| 950                 | 0.008                   | 18.983                 | 0.155                               | 0.064                  | 0.000                              | 18.981                                  | 0.010  | 0.004  | 1112     | ו<br>ד          |
| 1100                | 0.007                   | 10.7/3                 | 0.150                               | 0.009                  | 0.000                              | 10.0/4                                  | 0.331  | 0.009  | 1110     | 1               |
| 1200                | 0.012                   | 10.90/                 | 0.154                               | 0.055                  | 0.000                              | 19.019                                  | -0.109 | 0.035  | 1114     | 4<br>11         |
| 1200                | 0.000                   | 10.73/                 | 0.151                               | 0.014                  | 0.000                              | 10.910                                  | 0.145  | 0.014  | 1109     | 11              |
| 1400                | 0.004                   | 10.712                 | 0.155                               | 0.020                  | 0.000                              | 10.034                                  | 1 877  | 0.020  | 1002     | 12              |
| 1400                | 0.005                   | 10.075                 | 0.155                               | 0.030                  | 0.001                              | 10.319                                  | 1.0//  | 0.030  | 1092     | 10              |

Table A.2 (Continued)

|          | (              | ,                      |                                    |                                    |                                    |                                     |         |        |          |                 |
|----------|----------------|------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|---------|--------|----------|-----------------|
| Power    | Fraction       | $^{40}$ Ar/ $^{39}$ Ar | <sup>38</sup> Ar/ <sup>39</sup> Ar | <sup>37</sup> Ar/ <sup>39</sup> Ar | <sup>36</sup> Ar/ <sup>39</sup> Ar | $^{40}\text{Ar}^{*}/^{39}\text{Ar}$ | %atm    | Ca/K   | Age (Ma) | $1\sigma$ error |
| 1600     | 0.003          | 18.745                 | 0.151                              | 0.020                              | -0.001                             | 18.991                              | -1.314  | 0.020  | 1113     | 9               |
| 1800     | 0.001          | 17.972                 | 0.130                              | 0.025                              | -0.004                             | 19.181                              | -6.725  | 0.025  | 1121     | 47              |
| 2000     | 0.000          | 15.787                 | 0.084                              | 0.404                              | -0.036                             | 26.512                              | -67.943 | 0.404  | 1415     | 327             |
| 2400     | 0.000          | 18.686                 | 0.043                              | 0.652                              | -0.043                             | 31.375                              | -67.903 | 0.652  | 1587     | 736             |
| 3000     | 0.000          | 23.269                 | 1.269                              | 16.929                             | 0.430                              | -103.722                            | 545.759 | 16.929 | #####    | 16472           |
| 4000     | 0.000          | 0.126                  | 0.082                              | -0.459                             | 0.579                              | -171.038                            | ######  | -0.459 | #####    | 2035            |
| J-value: | $=0.04492 \pm$ | 0.00009                |                                    |                                    |                                    |                                     |         |        |          |                 |
| Total ga | s age = 1105   | $.2\pm1.7\mathrm{Ma}$  |                                    |                                    |                                    |                                     |         |        |          |                 |
| MI88-b4  | 45a 308a bio   | tite                   |                                    |                                    |                                    |                                     |         |        |          |                 |
| 50       | 0.005          | 8.318                  | 0.035                              | 0.052                              | 0.005                              | 6.895                               | 17.109  | 0.052  | 487      | 23              |
| 75       | 0.002          | 16.713                 | 0.005                              | 0.033                              | 0.000                              | 16.814                              | -0.601  | 0.033  | 1015     | 23              |
| 100      | 0.003          | 18.289                 | 0.007                              | 0.077                              | 0.000                              | 18.190                              | 0.543   | 0.077  | 1078     | 20              |
| 125      | 0.006          | 19.226                 | 0.004                              | 0.009                              | 0.000                              | 19.329                              | -0.538  | 0.009  | 1128     | 13              |
| 150      | 0.012          | 18.892                 | 0.008                              | -0.018                             | 0.000                              | 18.762                              | 0.685   | -0.018 | 1103     | 10              |
| 175      | 0.020          | 18.918                 | 0.009                              | 0.010                              | 0.001                              | 18.688                              | 1.213   | 0.010  | 1100     | 4               |
| 200      | 0.027          | 18.792                 | 0.008                              | 0.030                              | 0.001                              | 18.561                              | 1.228   | 0.030  | 1094     | 5               |
| 225      | 0.028          | 18.816                 | 0.010                              | 0.003                              | 0.000                              | 18.733                              | 0.439   | 0.003  | 1102     | 5               |
| 250      | 0.029          | 18.767                 | 0.009                              | 0.009                              | 0.000                              | 18.651                              | 0.617   | 0.009  | 1098     | 5               |
| 275      | 0.033          | 18.798                 | 0.010                              | 0.010                              | 0.000                              | 18.824                              | -0.137  | 0.010  | 1106     | 4               |
| 300      | 0.034          | 18.815                 | 0.011                              | 0.017                              | 0.000                              | 18.747                              | 0.359   | 0.017  | 1103     | 5               |
| 350      | 0.049          | 18.943                 | 0.012                              | 0.017                              | 0.000                              | 18.934                              | 0.047   | 0.017  | 1111     | 3               |
| 400      | 0.055          | 19.091                 | 0.013                              | 0.012                              | 0.000                              | 19.049                              | 0.223   | 0.012  | 1116     | 3               |
| 450      | 0.056          | 18.970                 | 0.014                              | 0.009                              | 0.000                              | 18.991                              | -0.110  | 0.009  | 1113     | 3               |
| 500      | 0.065          | 19.059                 | 0.015                              | 0.010                              | 0.000                              | 19.041                              | 0.095   | 0.010  | 1116     | 2               |
| 550      | 0.065          | 18,986                 | 0.014                              | 0.005                              | 0.000                              | 18.970                              | 0.085   | 0.005  | 1112     | 2               |
| 600      | 0.074          | 18.914                 | 0.014                              | 0.006                              | 0.000                              | 18,903                              | 0.059   | 0.006  | 1109     | 2               |
| 650      | 0.057          | 18.957                 | 0.015                              | 0.003                              | 0.000                              | 18.937                              | 0.104   | 0.003  | 1111     | 2               |
| 700      | 0.090          | 19.159                 | 0.015                              | 0.004                              | 0.000                              | 19.153                              | 0.035   | 0.004  | 1120     | 1               |
| 750      | 0.067          | 19.219                 | 0.015                              | 0.005                              | 0.000                              | 19.168                              | 0.263   | 0.005  | 1121     | 2               |
| 800      | 0.023          | 19.047                 | 0.013                              | 0.007                              | 0.000                              | 18.964                              | 0.432   | 0.007  | 1112     | 5               |
| 850      | 0.123          | 19.325                 | 0.017                              | -0.001                             | 0.000                              | 19.333                              | -0.042  | -0.001 | 1128     | 1               |
| 900      | 0.021          | 19 327                 | 0.006                              | 0.003                              | 0.000                              | 19 347                              | -0.099  | 0.003  | 1120     | 6               |
| 950      | 0.007          | 19.028                 | 0.008                              | -0.031                             | 0.000                              | 19.077                              | -0.257  | -0.031 | 1117     | 21              |
| 1000     | 0.016          | 19.511                 | 0.010                              | 0.001                              | 0.000                              | 19.457                              | 0.279   | 0.001  | 1134     | 9               |
| 1100     | 0.000          | 19 511                 | -0.469                             | 4 684                              | 0.000                              | 13 798                              | 29 281  | 4 684  | 871      | 4336            |
| 1200     | 0.000          | 23 121                 | -0.186                             | 4 624                              | 0.241                              | -47 972                             | 307 485 | 4 624  | #####    | 4493            |
| 1300     | 0.000          | 18 085                 | -0.017                             | -3 497                             | 0.001                              | 17 743                              | 1 896   | -3 497 | 1058     | 2678            |
| 1400     | 0.000          | 22 556                 | -0.032                             | 2 322                              | 0.080                              | -1.059                              | 104 695 | 2 322  | -88      | 5125            |
| 1600     | 0.006          | 19 771                 | 0.032                              | 0.015                              | -0.001                             | 20.205                              | _2 192  | 0.015  | 1166     | 15              |
| 1800     | 0.000          | 19.952                 | 0.012                              | 0.015                              | 0.001                              | 19 992                              | -0.200  | 0.024  | 1157     | 8               |
| 2800     | 0.012          | 19.552                 | 0.002                              | 0.024                              | 0.000                              | 19.572                              | -0.194  | 0.024  | 1137     | 9               |
| 4000     | 0.002          | 21.271                 | -0.001                             | -0.010                             | -0.006                             | 23.137                              | -8.772  | -0.010 | 1286     | 60              |
| I-value: | = 0.04495 +    | 0 00009                |                                    |                                    |                                    |                                     |         |        |          |                 |
| Total ga | s age = 1113   | $.3 \pm 1.9$ Ma        |                                    |                                    |                                    |                                     |         |        |          |                 |
| MI88-b4  | 44a 314 biot   | ite                    |                                    |                                    |                                    |                                     |         |        |          |                 |
| 50       | 0.001          | 13.185                 | 0.059                              | 0.197                              | 0.007                              | 10.999                              | 16.581  | 0.197  | 725      | 20              |
| 75       | 0.001          | 16.230                 | 0.041                              | 0.150                              | 0.002                              | 15.575                              | 4.036   | 0.150  | 958      | 15              |
| 100      | 0.004          | 12.738                 | 0.033                              | 0.138                              | 0.001                              | 12.462                              | 2.170   | 0.138  | 803      | 6               |
| 125      | 0.005          | 20.194                 | 0.036                              | 0.077                              | 0.001                              | 20.016                              | 0.884   | 0.077  | 1158     | 5               |
| 150      | 0.007          | 26.556                 | 0.039                              | 0.014                              | 0.001                              | 26.260                              | 1.113   | 0.014  | 1407     | 3               |
| 175      | 0.012          | 27.115                 | 0.040                              | 0.010                              | 0.001                              | 26.725                              | 1.437   | 0.010  | 1424     | 2               |
| 200      | 0.019          | 27.072                 | 0.040                              | 0.006                              | 0.000                              | 26.956                              | 0.428   | 0.006  | 1432     | 2               |
|          |                |                        |                                    |                                    |                                    | =                                   | 5       |        |          | -               |

Table A.2 (Continued)

| Power                 | Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40 Ar/39 Ar           | <sup>38</sup> Ar/ <sup>39</sup> Ar | <sup>37</sup> Ar/ <sup>39</sup> Ar | <sup>36</sup> Ar/ <sup>39</sup> Ar | $^{40}{\rm Ar}^{*}/^{39}{\rm Ar}$ | %atm   | Ca/K  | Age (Ma) | $1\sigma$ error |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|--------|-------|----------|-----------------|
| 225                   | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.393                | 0.040                              | 0.005                              | 0.000                              | 27.286                            | 0.391  | 0.005 | 1445     | 1               |
| 250                   | 0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.603                | 0.039                              | 0.004                              | 0.000                              | 27.570                            | 0.121  | 0.004 | 1455     | 1               |
| 275                   | 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.630                | 0.039                              | 0.005                              | 0.000                              | 27.567                            | 0.227  | 0.005 | 1455     | 1               |
| 300                   | 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.819                | 0.039                              | 0.008                              | 0.000                              | 27.784                            | 0.128  | 0.008 | 1463     | 1               |
| 350                   | 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.795                | 0.039                              | 0.006                              | 0.000                              | 27.809                            | -0.049 | 0.006 | 1463     | 1               |
| 400                   | 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.754                | 0.039                              | 0.008                              | 0.000                              | 27.764                            | -0.035 | 0.008 | 1462     | 1               |
| 450                   | 0.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.834                | 0.039                              | 0.010                              | 0.000                              | 27.841                            | -0.023 | 0.010 | 1465     | 1               |
| 500                   | 0.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.907                | 0.040                              | 0.012                              | 0.000                              | 27.934                            | -0.094 | 0.012 | 1468     | 1               |
| 550                   | 0.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.956                | 0.040                              | 0.015                              | 0.000                              | 27.983                            | -0.097 | 0.015 | 1470     | 1               |
| 600                   | 0.046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.847                | 0.040                              | 0.016                              | 0.000                              | 27.854                            | -0.025 | 0.016 | 1465     | 1               |
| 650                   | 0.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.817                | 0.040                              | 0.017                              | 0.000                              | 27.816                            | 0.004  | 0.017 | 1464     | 1               |
| 700                   | 0.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.768                | 0.040                              | 0.019                              | 0.000                              | 27.773                            | -0.020 | 0.019 | 1462     | 1               |
| 750                   | 0.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.722                | 0.040                              | 0.021                              | 0.000                              | 27.721                            | 0.004  | 0.021 | 1460     | 1               |
| 800                   | 0.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.688                | 0.039                              | 0.016                              | 0.000                              | 27.674                            | 0.051  | 0.016 | 1459     | 1               |
| 850                   | 0.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.683                | 0.039                              | 0.020                              | 0.000                              | 27.674                            | 0.033  | 0.020 | 1459     | 1               |
| 900                   | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.689                | 0.039                              | 0.031                              | 0.000                              | 27.697                            | -0.030 | 0.031 | 1459     | 1               |
| 950                   | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.726                | 0.039                              | 0.011                              | 0.000                              | 27.713                            | 0.047  | 0.011 | 1460     | 1               |
| 1000                  | 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.729                | 0.038                              | 0.011                              | 0.000                              | 27.714                            | 0.055  | 0.011 | 1460     | 1               |
| 1100                  | 0.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.751                | 0.039                              | 0.019                              | 0.000                              | 27.742                            | 0.030  | 0.019 | 1461     | 1               |
| 1200                  | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.641                | 0.039                              | 0.021                              | 0.000                              | 27.620                            | 0.074  | 0.021 | 1457     | 1               |
| 1300                  | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.674                | 0.039                              | 0.043                              | 0.000                              | 27.668                            | 0.021  | 0.043 | 1458     | 1               |
| 1400                  | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.699                | 0.039                              | 0.023                              | 0.000                              | 27.692                            | 0.028  | 0.023 | 1459     | 1               |
| 1600                  | 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.606                | 0.039                              | 0.053                              | 0.000                              | 27.584                            | 0.078  | 0.053 | 1455     | 2               |
| 1800                  | 0.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.639                | 0.040                              | 0.131                              | 0.000                              | 27.638                            | 0.004  | 0.131 | 1457     | 1               |
| 2000                  | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.481                | 0.040                              | 0.076                              | -0.001                             | 27.650                            | -0.616 | 0.076 | 1458     | 7               |
| 2400                  | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.889                | 0.043                              | 0.011                              | -0.002                             | 28.419                            | -1.900 | 0.011 | 1485     | 27              |
| 3000                  | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.560                | 0.038                              | 0.107                              | 0.000                              | 27.676                            | -0.422 | 0.107 | 1459     | 17              |
| 4000                  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.905                | 0.077                              | 0.956                              | 0.022                              | 21.335                            | 23.543 | 0.956 | 1214     | 527             |
| J-value :<br>Total ga | $= 0.04497 \pm 0.$ | 0.00009<br>5 ± 2 1 Ma |                                    |                                    |                                    |                                   |        |       |          |                 |

#### References

- Almeida, F.F.M., Hasui, Y., 1984. O embasamento da plataforma Sul Americana, in: Almeida, F.F.M., Hasui, Y. (Eds.), O Precambriano do Brasil, Editora Edgard Blücher, São Paulo.
- Amaral, G., 1974. Geologia Pré-Cambriana da região Amazônica, Unpublished Ph.D. Thesis, Universidade de São Paulo, 144 p. (in Portuguese).
- Barros, A.M., Silva, R.H., Cardoso, O.R.F., Freire, F.A., Souza, J.J., Rivetti, M., Luz, D.S., Barros Palmeira, R.C., Tassinari, C.C.G., 1982, Projeto RADAMBRASIL; Folha SD.21 Cuiabá, Geologia, geomorfologia, pedologia, vegetação, e uso potencial da terra, Translated title: Geology, geomorphology, pedology, vegetation, and potential uses of land, Ministério das Minas e Energia, Rio de Janeiro, 544 p.
- Bettencourt, J.S., Onstott, T.C., de Jesus, T., Teixeira, W., 1996. Tectonic interpretation of <sup>40</sup>Ar/<sup>39</sup>Ar ages of country rocks from the central sector of the Río Negro–Juruena Province, southwest Amazonian craton. Int. Geol. Rev. 38, 42– 56.

- Bettencourt, J.S., Tosdal, R.M., Leite, W.B., Payolla, B.L., 1999. Mesoproterozoic rapakivi granites of the Rondônia tin province, southwestern border of the Amazonian Craton, Brazil: reconnaissance U–Pb geochronology and regional implications. Precam. Res. 95, 41–67.
- Busch, J.P., Mezger, K., van der Pluijm, B.A., 1997. Suturing and extensional reactivation in the Grenville orogen, Canada. Geology 25, 507–510.
- Carrigan, C.W., Miller, C.F., Fullagar, P.D., Bream, B.R., Hatcher, R.D., Coath, C.D., 2003. Ion microprobe ages and geochemistry of southern Appalachian basement, with implications for Proterozoic and Paleozoic reconstructions. Precam. Res. 120, 1–36.
- Cordani, U.G., Sato, K., 1999. Crustal evolution of the South American Platform, based on Nd isotopic systematics on granitoid rocks. Episodes 22, 167–173.
- Davidson, A., 1998. An overview of Grenville Province geology, Canadian Shield. In Lucas, S.B., St-Onge, M.R., (Eds.), Geology of the Precambrian Superior Province and Precambrian fossils in North America. vol. 7. Geol. Surv. Can., pp. 205–270.

- Davidson, J., Charlier, B., Hora, J.M., Perlroth, R., 2005. Mineral isochrons and isotopic fingerprinting: pitfalls and promises. Geology 33, 29–32.
- Fernandes, C.J., 1999. Geologia do depósito Pau-a-Piques e guias prospectivos para ouro no Grupo Aguapeí, sudoeste do estado de Mato Grosso, unpublished M.Sc., Universidade Federal do Rio Grande do Sul, Porto Allegre, 134 p. (in Portuguese).
- Geraldes, M.C., Figueiredo, B.R., Tassinari, C.C.G., Ebert, H.D., 1997. Middle Proterozoic vein hosted gold deposits in the Pontes e Lacerda region, southwestern Amazonian craton, Brazil. Int. Geol. Rev. 39, 438–448.
- Geraldes, M.C., Van Schmus, W.R., Condie, K.C., Bell, S., Teixeira, W., Babinski, M., Bartley, J.K., Kah, L.C., 2001. Proterozoic geologic evolution of the SW part of the Amazonian Craton in Mato Grosso State, Brazil. Precam. Res. 111, 91–128.
- Heaman, L., Parrish, R.R., 1991. U-Pb geochronology of accessory minerals. Short Course Handbook, vol. 19. Mineralogical Association of Canada, pp. 59–102.
- Hoffman, P.F., 1991. Did the breakout of Laurentia turn Gondwana inside out? Science 252, 1409–1412.
- Ketchum, J.W.F., Heaman, L.M., Krogh, T.E., Culshaw, N.G., Jamieson, R.A., 1998. Timing and therman influence of late orogenic extension in the lower crust: a U–Pb geochronological study from the southwest Grenville orogen. Can. Precam. Res. 89, 25–45.
- Leal, J.W.L., Silva, G.H., Santos, D.B., Teixeira, W., de Lima, M.I.C., Fernandes, C.A.C., Pinto, A., 1978. Folha SC. 20, Porto Velho, [Monograph] Projeto RADAMBRASIL, Departamento Nacional de Producao Mineral, Rio de Janeiro, 16, pp. 17–184 (in Portuguese).
- Litherland, M., Bloomfield, K., 1981. The Proterozoic history of eastern Bolivia. Precam. Res. 15, 157–161.
- Litherland, M., Annells, R.N., Appleton, J.D., Berrange, J.P., Bloomfield, K., Burton, C.C.J., Darbyshire, D.P.F., Fletcher, C.J.N., Hawkins, M.P., Klinck, B.A., Llanos, A., Mitchell, W.I., O'Connor, E.A., Pitfield, P.E.J., Power, G., Webb, B.C., 1986. The geology and mineral resources of the Bolivian Precambrian shield. British Geological Survey Overseas Memoir, vol. 9, 153 pp.
- Litherland, M., Annells, R.N., Darbyshire, D.P.F., Fletcher, C.J.N., Hawkins, M.P., Klinck, B.A., Mitchell, W.I., O'Connor, E.A., Pitfield, P.E.J., Power, G., Webb, B.C., 1989. The Proterozoic of eastern Bolivia and its relationship to the Andean mobile belt. Precam. Res. 43, 157–174.
- Loewy, S., Connelly, J.N., Dalziel, L.W.D., Gower, C.F., 2003. Amazonia in Rodinia: constraints from whole rock Pb and U/Pb geochronology. Tectonophysics 375, 169–197.
- Mezger, K., van der Pluijm, B.A., Essene, E.J., Halliday, A.N., 1992. The Carthage-Colton mylonite zone (Adirondack Mountains, New York): the site of a cryptic suture in the Grenville Orogen? J. Geol. 100, 630–638.
- Mezger, K., Essene, E.J., van der Pluijm, B.A., Halliday, A.N., 1993. U–Pb geochronology of the Grenville Orogen of Ontario and New York: constraints on ancient crustal tectonics. Contrib. Miner. Petrol. 114, 13–26.
- Parrish, R.R., 1991. U–Pb dating of monazite and its application to geological problems. Can. J. Earth Sci. 27, 1435–1450.

- Payolla, B.L., Bettencourt, J.S., Kozuch, M., Leite Jr., W.B., Fetter, A.H., Van Schmus, W.R., 2002. Geological evolution of the basement rocks in the east-central part of the Rondônia Tin Province, SW Amazon craton, Brazil: U–Pb and Sm–Nd isotopic constraints. Precam. Res. 119, 141–169.
- Pinho, M.A.S.B., Chemale, F., Van Schmus, W.R., Pinho, F.E.C., 2003. U–Pb and Sm–Nd evidence for 1.76–1.77 Ga magmatism in the Moriru region, Mato Grosso, Brazil: implications for province boundaries in the SW Amazon Craton. Precam. Res. 126, 1–25.
- Priem, H.N.A., Boelrijk, N.A.I.M., Hebeda, E.H., Verdurmen, E.A.Th., Verschure, R.H., Bon, E.H., 1971. Granitic complexes and associated tin mineralizations of "Grenville" age in Rondônia, western Brazil. Geol. Soc. Am. Bull. 82, 1095–1102.
- Priem, H.N.A., Bon, E.H., Verdurmen, E.A.Th., Bettencourt, J.S., 1989. Rb–Sr geochronology of Precambrian crustal evolution in Rondônia (western margin of the Amazonian craton), Brazil. J. S. Am. Earth Sci. 2, 163–170.
- Provost, A., 1990. An improved diagram for isochron data. Chem. Geol. 80, 85–99.
- Rivers, T., 1997. Lithotectonic elements of the Grenville Province: review and tectonic implications. Precam. Res. 86, 117–154.
- Rizzotto, G.J., 1999. Petrologia e geotectônia do Grupo Nova Brasilândia, Rondônia. Unpublished M.Sc., Universidade Federal do Rio Grande do Sul, Porto Allegre, 131 p. (in Portuguese).
- Rizzotto, G.J., 2001, Reavaliação do ciclo orogênico Sunsás/Aguapeí no sudoeste do craton Amazônico, Workshop of the SW Amazonian Craton: State of the Art Universidade de São Paulo, São Paulo, Brazil, August 10–12.
- Rizzotto, G.J., Quadros, M.L.E.S., Scandolara, J.E., Silva, C.R., Bahia, R.B.C., 1995. Posicionamento tectono-estratigráfico da sequência metavulcano-sedimentar Roosevelt na região limítrofe dos estados de Rondônia e Mato Grosso, 5th Simpósio Nacional de Estudos Tectônicos, Gramado, pp. 310–311 (in Portuguese).
- Rizzotto, G.J., Chemale, F., de Lima, E.F., Van Schmus, R., Fetter, A., 1999. Sm/Nd and U/Pb isotopic data for the Nova Brasilândia metaplutonic, metavolcanosedimentary sequence, Rondônia. Annual 70th Meeting Brazilian Geology Society, Salvador, 1998.
- Rougvie, J.R., Carlson, W.D., Copeland, P., Connelly, J.N., 1999. Late thermal evolution of Proterozoic rocks in the northeastern Llano Uplift, central Texas. Precam. Res. 94, 49–72.
- Sadowski, G.R., Bettencourt, J.S., 1996. Mesoproterozoic tectonic correlations between eastern Laurentia and the western border of the Amazon craton. Precam. Res. 76, 213–227.
- Saes, G.S., 1999. Tectonic and paleogeographic evolution of the Aguapeí aulacogen (1.2–1.0 Ga) and the basement terranes in the southern Amazon craton. Ph.D. Thesis, Universidade de São Paulo, 135 p. (in Portuguese).
- Scandolâra, J.E., Rizzotto, G.J., de Amorim, J.L., Bahia, R.B.C., Quadros, M.L., Silva, C.R., 1998. Geological map of Rondônia 1:1,000,000, Companhia de Pesquisa de Recursos Minerais.
- Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotopic evolution by a two-stage model. Earth Planet. Sci. Lett. 26, 207–221.
- Streepey, M.M., Johnson, E.L., Mezger, K., van der Pluijm, B.A., 2001. Early history of the Carthage-Colton shear zone, Grenville

Province, Northwest Adirondacks, New York (USA). J. Geol. 109, 479–492.

- Tassinari, C.C.G., 1981. Evolução geotectônica da Província Rio-Negro-Juruena na região Amazônica. Unpublished M.Sc., Universidade de São Paulo, 99 p. (in Portuguese).
- Tassinari, C.C.G., Macambira, M.J.B., 1999. Geochronological provinces of the Amazonian Craton. Episodes 22, 174–182.
- Tassinari, C.C.G., Cordani, U.G., Nutman, A.P., Van Schmus, W.R., Bettencourt, J.S., Taylor, P.N., 1996. Geochronological systematics on basement rocks from the Rio Negro-Juruena Province (Amazonian Craton) and tectonic implications. Int. Geol. Rev. 38, 161–175.
- Tassinari, C.C.G., Bettencourt, J.S., Geraldes, M.C., Macambira, M.J.B., Lafon, J.M., 2000. The Amazonian craton, in Tectonic evolution of South America. In: Cordani, U.G., Milani, E.J., Thomaz Filho, A., Campos, D.A. (Eds.), Rio de Janeiro, pp. 41–95.
- Teixeira, W., Tassinari, C.C.G., Cordani, U.G., Kashawita, K., 1989. A review of the geochronology of the Amazonian craton: tectonic implications. Precam. Res. 42, 213–227.
- Tohver, E., van der Pluijm, B.A., Van der Voo, R., Rizzotto, G., Scandolara, J.E., 2002. Paleogeography of the Amazon craton at 1.2 Ga: early Grenvillian collision with the Llano segment of Laurentia. Earth Planet. Sci. Lett. 199, 185–200.

- Tohver, E., Bettencourt, J.S., Tosdal, R., Mezger, K., Leite, W.B., Payolla, B.L., 2004. Terrane transfer during the Grenville orogeny: tracing the Amazonian ancestry of southern Appalahian basement through Pb and Nd isotopes. Earth Planet. Sci. Lett. 228, 161–176, 10.1016/j.epsl.2004.09.029.
- Tohver, E., van der Pluijm, B.A., Mezger, K., Scandolara, J.E., Essene, E.J., Significance of the Nova Brasilândia Metasedimentary Belt in western Brazil: Redefining the Mesoproterozoic boundary of the Amazon craton. Tectonics 23, TC6004.
- Tohver, E., van der Pluijm, B.A., Scandolara, J.E., Essene, E.J. Grenville-aged deformation of Amazonia (Rondônia, Brazil): evidence for oblique collision with southern Laurentia. J. Geol., in press.
- Tosdal, R.M., Bettencourt, J.S., 1994. U–Pb zircon ages and Pb isotopic compositions of middle Proterozoic Rondônian massifs, southwestern margin of the Amazon craton, Brazil, Actas, Seventh Congresso Geológico Chileno, pp. 1538–1541.
- van der Pluijm, B.A., Mezger, K., Cosca, M.A., Essene, E.J., 1994. Determining the significance of high grade shear zones. Geology 22, 743–746.
- Weil, A.B., Van der Voo, R., Connall, Mac-Niocaill, Meert, J.G., 1998. The Proterozoic supercontinent Rodinia; paleomagnetically derived reconstruction for 1100 to 800 Ma. Earth Planet. Sci. Lett. 154, 13–24.